Background:
Enzymes are very efficient catalysts for biochemical reactions. They speed up reactions by providing an alternative reaction pathway of lower activation energy. Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium. Enzymes are usually highly selective, catalyzing specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Pineapples
Pineapple’s lush, tropical sweetness is reason enough to enjoy it any way you can, but this fruit also contains vitamin C and manganese. This fruit’s most promising nutritional asset, though, may be bromelain, a natural enzyme found in both the fruit and the stem.
Most of the pineapple consumed in the United States is canned (in the form of juice as well as fruit), but fresh pineapple is much more flavorful, and , despite its tough bristly shell, is easy to prepare.
The fruit probably first grew wild in parts of South America and then spread to the Caribbean, where Columbus encountered it. By 1600, early European explorers had carried pineapples as far as China and the Philippines. In the 18th century, pineapples were taken to the Hawaiian Islands, eventually becoming the major fruit crop. Hawaiian pineapple producers were the first to can the fruit.
Bromelain
The pineapple plant contains protein-digesting enzymes called, as a group, bromelain. In the health world, these enzymes are regarded as useful in reducing muscle and tissue inflammation (hence the joint pain and wound-healing possibilities), as well as acting as a digestive aid. In the cooking world, on the other hand, bromelain is regarded as the enemy of the gelatin dessert. If you use fresh pineapple in gelatin, the enzyme eats the protein and the gelatin will not gel—in fact