LINEAR ALGEBRA
QUESTION ı
The blanks below will be filled by students.
i Name:
Surname:
Signature:
22 MAY 2013
FINAL
i Electronic
Group Number: \ List Number:
Post( e-mail) address:
For the solution of this question
(Except the score)
Score
Student Number:
please use only the front face and if necessary the back face of this page.
[ı2 pts] (a) Find the transition matrix from the ordered basis [(ı, ı, ı)T, (ı, 0, O)T, (0,2, ı)T] of R3 to the ordered basis [(2,ı, O)T, (0, ı, O)T, (ı, 2, ı)T] of R3.
[13 pts] (b) Let A
!ı
=
(
°
-;ı
2
~ ~ !ı)
ı
°
2
ı
3
2
4
.
5
(i) Find a basis for the row space of A and determine its dimension.
(ii) Find a basis for the column space of A and determine its dimension.
(iii) Find the rank of A.
1\
\
'l.ı
1i o 1
1
O
o
1h.. \ 1/1Jh.
1
11'2
\ 117.. -111-
O
1
2-
D 1
O 1
_1
L1
LLL
1/'2-
~1
o
o
1
f)
o,
C
4 1
1
LL ıgJ = qı ı~J
\
pJ
a1llj b1nJ
UJ=
1
)-OJ
~
i bı
L
~
+ L Li
q'l -t 1'1
.
-:. 1
rJ
~~L ı~L
+Cj
'tbJ
~
1
o
u
O
~
rı
1
"\ ~
\ i ('lı 11 1 ) T
li
i
/ cı f
\.
,
\
Q
\'\ 1\)-~
_.~)
l?_v-1u\.,
-
'
ı
e,
i...,.
i
'
';y
I
-=-
i
/
i
'ı
f
\
i..
J
ı
' :,.l1
o
1-s
1 o
1
-'L -3! 1 -2 D
\
o 1 () 01
1 O
ıı v
\
1
o
1
31 ı -1/ı
1
P-::. \j - U "";.
,o
1/2
-1[2
O
1fı
b :.
J
1
:::') (J::'
O
10~
o
o
1
o
, o
1 L-
\ ')
-2
5ı.
\
S? - 3.,SJ
-j f
1-
1\ \
1
ı
o
1
o o
01
s 1- ~ ~3-> S 1
-1'1\
1
S 1.. - U 1
_).s 1...
100
1
1 '2 i o
013h'i-1'210~
O
1}
O
o
1
1
'3
zn
(0,'110)11111(11)
1
1
-j
1
O
O O 1
1 -3
(1,1 0}T
Lo
1
J