Preview

Massing Mg Lab

Good Essays
Open Document
Open Document
1002 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Massing Mg Lab
Massing Magnesium Lab

Research Question/Aim

To understand the change in mass after burning magnesium and to also determine the chemical formula of magnesium oxide

Hypothesis
Burning the magnesium will result in an increase in mass because the magnesium will react with oxygen in the air to make magnesium oxide

Variables
Independent- Initial mass of magnesium (Mg)
Dependent- Mass of the burnt magnesium (MgO)
Controlled:
Intensity of flame
Apparatus used (same crucible, Bunsen burner, tongs, electric balance)
Duration of burning the crucible and magnesium
Size of magnesium ribbon (was about 10-11 cm long)

Materials

1. Goggles (eye protection)
2. Pair of metal tongs
3. Crucible (ceramic) with lid
4. Bunsen burner
5. Matches
6. Tripod
7. Pipe clay triangle
8. Heat resistant mat
9. Electric balance
10. Magnesium ribbon (x3)

Safety

Wear goggles to protect eyes
Wait for the crucible to cool off before touching it (the crucible after burning is very hot and may burn the skin)
The person who moved the hot circle is responsible for informing others that it is hot
Before touching the crucible, place hand near it to see if it is warm
Tie hair up to avoid burning hair

Procedure

1. Set up the heat resistant mat, Bunsen burner, tripod, and pipe clay triangle
2. Clean the crucible [with the lid] first by washing it under the tap
3. Dry the crucible by heating it with the Bunsen burner (will remove all the water)
4. After the crucible has cooled completely weigh the crucible [with the lid] on the electric balance and record it
5. Twist a piece of magnesium ribbon into a loose coil
6. Weigh the crucible with the magnesium inside it [with the lid] and record it.
7. Burn the magnesium with the lid placed slightly ajar to facilitate gas exchange when heating (since oxygen is required for this combustion reaction)
8. Burn the magnesium for a few minutes, making sure to check now and again by lifting the lid with

You May Also Find These Documents Helpful

  • Satisfactory Essays

    * Set crucible at angle in triangle held in ring on ring stand. Cover crucible loosely with crucible cover, and heat gently. Alum will melt, and water of hydration will evaporate.…

    • 1639 Words
    • 7 Pages
    Satisfactory Essays
  • Good Essays

    To find this formula, a strip of Magnesium ribbon was burned in a crucible over a flame from a bunson burner. After the strip caught fire multiple times with the cover on, and 10 drops of distilled water were added, and the crucible was lightly heated. The crucible was then weighed and the mass recorded. Calculations were performed and the mole ratio of Mg to O was recorded. The results of other lab groups performing the same experiment were also recorded.…

    • 408 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    H2 Unit 3 Lab Report

    • 293 Words
    • 2 Pages

    4. Calculate the # of atoms of Magnesium that were involved in the reaction – use Avagadro’s number – remember units!…

    • 293 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    The first step in the experiment was to measure the mass of the crucible for trial 1. The second step was to add the Sodium bicarbonate using the scoopula into the crucible. The mass of the crucible and the Sodium bicarbonate was weighed. Next, the mass of just the Sodium bicarbonate was determined by subtracting the mass of the crucible and the substance by the mass of the crucible by itself. For all three trials, the mass of just the Sodium bicarbonate was exactly 2 grams.…

    • 187 Words
    • 1 Page
    Satisfactory Essays
  • Satisfactory Essays

    Ilab Chemistry Lab

    • 451 Words
    • 2 Pages

    In order to measure the atomic weight of magnesium after it is consumed, it has to be mixed with hydrochloric acid. Once it has consumed it will produce hydrogen gas, which will be trapped and measured. This means that the atomic weight of magnesium will result from separating the hydrogen gas from the acid in the magnesium. The chemical equation mentioned in the introduction indicates that one mole of hydrogen gas is produced for every mole of magnesium that reacts. In this lab, there is a 1:1 ratio between the number of moles of hydrogen gas evolved and the number of moles of magnesium consumed in the reaction. Therefore, the number of moles of hydrogen gas evolved is equal to the number of moles of magnesium consumed. The atomic weight of magnesium is equal to the weight of magnesium consumed per moles of hydrogen gas evolved.…

    • 451 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    4. Using the spatula add 3g of copper sulfate hydrate crystals to the crucible and determine the mass.…

    • 971 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    Magnesium Ribbon Lab

    • 278 Words
    • 2 Pages

    Curl the magnesium ribbon around a pencil to make a size that just fits inside the crucible. Do not curl the ribbon too tightly.…

    • 278 Words
    • 2 Pages
    Good Essays
  • Good Essays

    The experiment was done twice in trial 1 and 2. First, in the first trial, the crucible with lid was measured on a balance and the mass of them was recorded in grams which is m of clean crucible = 22.89g . This was followed by weighing the crucible with 0.3 g of Magnesium on a balance. The total mass of mg with the crucible was recorded which was m total mass mg + Crucible = 23.19g. Then the magnesium was heated using a Bunsen burner, and we put the crucible with Mg on a clay triangle using tongs in order to get MgO compound.…

    • 331 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Gas Stoich Honors

    • 910 Words
    • 4 Pages

    2. Measure the mass of the magnesium ribbon to the nearest milligram (0.001 g) and record the mass.…

    • 910 Words
    • 4 Pages
    Better Essays
  • Good Essays

    Ionic Hydrate Lab Report

    • 465 Words
    • 2 Pages

    The process is to record the tare weight of a clean crucible. According to WiseGEEK, tare weight is the weight of an object (such as a jar, a cup, or, in this case, a crucible) when it is empty. You will add 2g of the copper sulfate hydrate crystals into the crucible, and then you weigh the crucible with the copper sulfate hydrate crystals and record the data. You then heat the crucible with the hydrate in it with a Bunsen burner for slightly more than 10 minutes, and then you weigh and record the data into your data table. After the weighing, it is reheated for five more minutes, and again weighed and recorded. If the masses are not within 0.05g of each other, you reheat it for another two minutes, weigh the masses again, and record the data. Keep reheating it until the weights are within 0.05g of each other. Then you will calculate and analyze…

    • 465 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Stoichiometry Lab Report

    • 1941 Words
    • 8 Pages

    Prepare two set-ups as shown below using a clay triangle on a ring stand. Place each crucible on a clay triangle and heat the crucibles until red hot or for five minutes. Once the heating is complete, place the crucible on a clean wire gauze and let it cool to room temperature. Determine the mass of the crucible and lid to the nearest…

    • 1941 Words
    • 8 Pages
    Good Essays
  • Good Essays

    Magnesium Oxide Lab

    • 647 Words
    • 3 Pages

    In this experiment, you first find the mass of the crucible and cover. Next, you will find the mass of crucible, cover and Mg. After that, you will crumple up the Mg and put it into the crucible and put the cover on over the bunsen burner with heating it for four min. Then you will remove the lid slightly and let it heat for another…

    • 647 Words
    • 3 Pages
    Good Essays
  • Good Essays

    2. Placed the magnesium strip into the hydrochloric acid into the tube and immediately covered the tube with a rubber stopper.…

    • 537 Words
    • 3 Pages
    Good Essays
  • Better Essays

    In the late eighteenth century, combustion has been studied extensively. In fact, according to Steven and Susan Zumdahl, Antoine Lavoisier, a French Chemist, performed thousands of combustion experiments and measured masses of every single reactant and product, including those which were gases (for example, Carbon Dioxide, Nitrogen, Hydrogen, and Oxygen). Lavoisier considered measurements to be an essential tool for chemistry. He observed that as the physical and chemical properties of the products and the reactants differed, the total mass of the products was always the same as the total mass of the reactants. His experiments suggested that “in a chemical reaction, mass is neither created nor destroyed” as summarized in the law of conservation of mass. (Zumdahl and Zumdahl 41) This experiment demonstrates the law of conservation of mass by and how it can be used to determine the empirical formula of magnesium oxide (MgO). The empirical formula is the simplest number ratio of each element in a substance. In order to get the empirical formula, the magnesium must react with the oxygen to get magnesium oxide. The goal of this experiment is to measure the mass of the magnesium, chemically change it to magnesium oxide, and then find the measurement of the magnesium oxide.…

    • 1715 Words
    • 7 Pages
    Better Essays
  • Good Essays

    In the Lab Determining the Empirical Formula of Magnesium Oxide, students set out to find if there is a true 1:1 ratio in the empirical formula of MgO. This was determined by burning the Magnesium until a white smoke started to protrude. This showed the reaction of Oxygen combining with Magnesium to form Magnesium Oxide. This was then measured again and turned out to be slightly heavier than the measurement before. This added weight is Oxygen, forming the combustion of Magnesium Oxide. The formula for Magnesium Oxide is 〖〖Mg〗_1 O〗_1, a 1:1 ratio of Magnesium to Oxygen. But after performing the lab a ratio of 〖〖Mg〗_1.15 O〗_1 was shown.…

    • 689 Words
    • 4 Pages
    Good Essays