Preview

MAT1300 FInal

Satisfactory Essays
Open Document
Open Document
1456 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
MAT1300 FInal
MAT1300D

Solution to Final Examination

Fall 2007

Solution to Final Examination
MAT1300D, Fall 2007
Part I. Multiple-Choice Questions (30 marks)
1.

D

2.

3.

E

A

4.

5.

B

C

6.

A

7.

8.

C

E

9.

D

10.

C

1. Find the equation of the tangent line to the graph of y = 3 x − 1 when x = 4.
(A) y =

1
1
3
3
3 x + 1 ; (B) y = x + 3 ; (C) y = x + 7 ; (D) y = x + 2 ; (E) y = x − 1 .
2
2
4
4
4

Solution. y' =

3

. When x = 4, y = 5, and y' =

2 x
3
3 line is y = (x − 4) + 5, or y = x + 2.
4
4

3
. Hence, the equation of the tangent
4

x 2 − x − 12
.
x →−3 x+3 2. Calculate lim

(A)

1
5

(B) 3

(C)

7
4

(D)

4
9

(E) −7.

Solution. x2 − x − 12 = (x + 3)(x − 4). x 2 − x − 12
( x + 3)( x − 4)
= lim
= lim ( x − 4) = −7. x →−3 x →−3 x →−3 x+3 x+3 lim 3. On what interval is the function g(x) = −2x3 + 12x2 − 36x + 3 concave down?
(A) (2, ∞)

(B) (2, 3)

(C) (−1, ∞)

(D) (−∞, −1)

(E) (−2, 4).

Solution. g' = −6x2 + 24x − 36, g" = −12x + 24. g'' = 0 implies x = 2. When x < 2, g" <
0, the graph of g(x) is concave down.
4. Which of the following statements is true for the function g(x) = 2x3 + 3x2 − 36x + 2?
(A) x = −1 is a local minimum.
(C) x = −3 is a local minimum.
(E) x = 1 is a local maximum.

(B) x = −3 is a local maximum.
(D) x = 1 is a local minimum.

1

MAT1300D

Solution to Final Examination

Fall 2007

Solution. g' = 6x2 + 6x − 36. Critical points are the roots of x2 + x − 6 = 0, x = −3, 2.
When −∞ < x < −3, g' > 0; when −3 < x < 2, g' < 0; when 2 < x < ∞, g' > 0. g attains a local maximum at x = −3.



5. Calculate
(A) 10

Solution.

4
0

(3 x + 1)dx

(C) 20

(B) 15



(D) 25

(E) 30

4
4
2
(3 x + 1)dx = 3∫ x1/ 2 dx + ∫ dx = 3   43 / 2 + 4 = 16 + 4 = 20 .
0
0
0
3
4

6a. Suppose that for a certain product, the demand function is given by D(x) = 11 − x2 and the

You May Also Find These Documents Helpful

Related Topics