Distribution
Uniform
Normal
Exponential
Gamma
Chi-square
Beta
Probability Function
f (y) =
f (y) =
1
; θ ≤ y ≤ θ2 θ2 − θ1 1
1
1
(y − µ)2
√ exp −
2
2σ σ 2π
−∞ < y < +∞
f (y) =
1 y α−1 e−y/β ;
(α)β α
0<y<∞
f (y) =
f (y) =
f (y) =
1 −y/β e ; β>0 β 0<y<∞
(y)(v/2)−1 e−y/2
2v/2 (v/2) y2 > 0
;
(α + β) y α−1 (1 − y)β−1 ;
(α) (β)
0<y<1
MomentGenerating
Function
Mean
Variance
θ1 + θ2
2
(θ2 − θ1 )2
12
µ
σ2
β
β2
(1 − βt)−1
αβ
αβ 2
(1 − βt)−α
v
2v
(1−2t)−v/2
α α+β αβ
(α + β)2 (α + β + 1)
does not exist in closed form
etθ2 − etθ1 t (θ2 − θ1 )
exp µt +
t 2σ 2
2
Discrete Distributions
Distribution
Binomial
Probability Function p(y) =
n y p y (1 − p)n−y ;
Mean
Variance
MomentGenerating
Function
np
np(1 − p)
[ pet + (1 − p)]n
1 p 1− p
pet
1 − (1 − p)et
y = 0, 1, . . . , n
Geometric
p(y) = p(1 − p) y−1 ;
p
y = 1, 2, . . .
Hypergeometric
p(y) =
r y N−r n−y N n ;
nr
N
n
r
N
2
N −r
N
N −n
N −1
y = 0, 1, . . . , n if n ≤ r, y = 0, 1, . . . , r if n > r
Poisson
Negative binomial
λ y e−λ
;
y! y = 0, 1, 2, . . .
p(y) =
p(y) =
y−1 r−1 p r (1 − p) y−r ;
y = r, r + 1, . . .
λ
λ
exp[λ(et − 1)]
r p r(1 − p)
pet
1 − (1 − p)et
p
2
r
MATHEMATICAL STATISTICS WITH APPLICATIONS
This page intentionally left blank
SEVENTH EDITION
Mathematical
Statistics with
Applications
Dennis D. Wackerly
University of Florida
William Mendenhall III
University of Florida, Emeritus
Richard L. Scheaffer
University of Florida, Emeritus
Australia • Brazil • Canada • Mexico • Singapore • Spain
United Kingdom • United States
Mathematical Statistics with Applications, Seventh Edition
Dennis D. Wackerly, William Mendenhall III, Richard L. Scheaffer
Statistics Editor: Carolyn Crockett
Assistant Editors: Beth Gershman, Catie Ronquillo
Editorial Assistant: Ashley Summers
Technology Project Manager: Jennifer Liang
Marketing Manager: Mandy Jellerichs
Marketing Assistant: Ashley Pickering
Marketing
References: Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis, 2d ed. New York: Springer-Verlag. Box, G. E. P. 1980. “Sampling and Bayes’ Inference in Scientific Modeling and Robustness,” J Box, G. E. P., and G. C. Tiao. 1992. Bayesian Inference in Statistical Analysis. New York: Wiley Classics. Casella, G., and R. L. Berger. 2002. Statistical Inference, 2d ed. Pacific Grove, Calif.: Duxbury. Hogg, R. V., J. W. McKean, and A. T. Craig. 2005. Introduction to Mathematical Statistics, 6th ed Kepner, J., and D. Wackerly. 2002. “Observations on the Effect of the Prior Distribution on the Predictive Distribution in Bayesian Inferences,” Journal of Mood, A. M., F. A. Graybill, and D. Boes. 1974. Introduction to the Theory of Statistics, 3d ed Rice, J. A. 1995. Mathematical Statistics and Data Analysis, 2d ed. Belmont, Calif.: Duxbury.