From Wikipedia, the free encyclopedia
The Meselson–Stahl experiment was an experiment by Matthew Meselson and Franklin Stahl in 1958 which supported the hypothesis that DNA replication was semiconservative. In semiconservative replication, when the double stranded DNA helix is replicated each of the two new double-stranded DNA helices consisted of one strand from the original helix and one newly synthesized. It has been called "the most beautiful experiment in biology.[1]"
Contents
[hide]
1 Hypothesis
2 Experimental procedure and results
3 Literature cited
4 External links
Hypothesis[edit source | editbeta]
A summary of the three postulated methods of DNA synthesis
Three hypotheses had been previously proposed for the method of replication of DNA.
In the semiconservative hypothesis, proposed by Watson and Crick, the two strands of a DNA molecule separate during replication. Each strand then acts as a template for synthesis of a new strand.[2]
The conservative hypothesis proposed that the entire DNA molecule acted as a template for the synthesis of an entirely new one. According to this model, histone proteins bind to the DNA, revolving the strand and exposing the nucleotide bases (which normally line the interior) for hydrogen bonding.[3]
The dispersive hypothesis is exemplified by a model proposed by Max Delbrück, which attempts to solve the problem of unwinding the two strands of the double helix by a mechanism that breaks the DNA backbone every 10 nucleotides or so, untwists the molecule, and attaches the old strand to the end of the newly synthesized one. This would synthesize the DNA in short pieces alternating from one strand to the other.[4]
Each of these three models makes a different prediction about the distribution of the "old" DNA in molecules formed after replication. In the conservative hypothesis, after replication, one molecule is the entirely conserved "old" molecule, and the other is all newly