Microelectronic Pill | | |
| | |
1.INTRODUCTION The invention of the transistor enabled the first radio telemetry capsules, which utilized simple circuits for in vivo telemetric studies of the gastro-intestinal tract. These units could only transmit from a single sensor channel, and were difficult to assemble due to the use of discrete components. The measurement parameters consisted of temperature, pH or pressure, and the first attempts of conducting real-time noninvasive physiological measurements suffered from poor reliability, low sensitivity, and short lifetimes of the devices. The first successful pH gut profiles were achieved in 1972, with subsequent improvements in sensitivity and lifetime. Single-channel radio telemetry capsules have since been applied for the detection of disease and abnormalities in the GI tract where restricted access prevents the use of traditional endoscopy. Most radio telemetry capsules utilize laboratory type sensors such as glass pH electrodes, resistance thermometers, or moving inductive coils as pressure transducers. The relatively large size of these sensors limits the functional complexity of the pill for a given size of capsule. Adapting existing semiconductor fabrication technologies to sensor development has enabled the production of highly functional units for data collection, while the exploitation of integrated circuitry for sensor control, signal conditioning, and wireless transmission, and has extended the concept of single-channel radio telemetry to remote distributed sensing from microelectronic pills. Our current research on sensor integration and onboard data processing has, therefore, focused on the development of Microsystems capable of performing simultaneous multiparameter physiological analysis. The technology has a range of applications in the detection of disease and abnormalities in medical research. The overall aim has been to deliver enhanced