1, 2, 3 = straightforward, intermediate, challenging
Section 26.1 Definition of Capacitance
1. (a) How much charge is on each plate of a 4.00-μF capacitor when it is connected to a 12.0-V battery? (b) If this same capacitor is connected to a 1.50-V battery, what charge is stored?
2. Two conductors having net charges of +10.0 μC and –10.0 μC have a potential difference of 10.0 V between them. (a) Determine the capacitance of the system. (b) What is the potential difference between the two conductors if the charges on each are increased to +100 μC and –100 μC?
Section 26.2 Calculating Capacitance
3. An isolated charged conducting sphere of radius 12.0 cm creates an electric field of 4.90 × 104 N/C at a distance 21.0 cm from its center. (a) What is its surface charge density? (b) What is its capacitance?
4. (a) If a drop of liquid has capacitance 1.00 pF, what is its radius? (b) If another drop has radius 2.00 mm, what is its capacitance? (c) What is the charge on the smaller drop if its potential is 100 V?
5. Two conducting spheres with diameters of 0.400 m and 1.00 m are separated by a distance that is large compared with the diameters. The spheres are connected by a thin wire and are charged to 7.00 μC. (a) How is this total charge shared between the spheres? (Ignore any charge on the wire.) (b) What is the potential of the system of spheres when the reference potential is taken to be V = 0 at r = ∞?
6. Regarding the Earth and a cloud layer 800 m above the Earth as the “plates’’ of a capacitor, calculate the capacitance. Assume the cloud layer has an area of 1.00 km2 and that the air between the cloud and the ground is pure and dry. Assume charge builds up on the cloud and on the ground until a uniform electric field of 3.00 × 106 N/C throughout the space between them makes the air break down and conduct electricity as a lightning bolt. What is the maximum charge the cloud can hold?
7. An