Preview

Nanofabrication and Scanning Probe Lithography

Better Essays
Open Document
Open Document
10175 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Nanofabrication and Scanning Probe Lithography
NANOFABRICATION AND SCANNING PROBE LITHOGRAPHY

Introduction:

“Nanofabrication” is the process of making functional structures with arbitrary patterns having minimum dimensions currently defined (more-or-less arbitrarily) to be e100 nm. Microelectronic devices and information technologies have improved and will continue to improve as a result of large-scale, commercial implementation of nanofabrication. The motivation for these improvements is to increase the density of components, lower their cost, and increase their performance per device and per integrated circuit. The smallest physical gate length of a microprocessor currently in production is 37 nm and current half-pitch, or periodicity, of manufactured dynamic random-access memory (DRAM) is 90 nm. The International Technology Roadmap for Semiconductors (ITRS), published by the Semiconductor Industry Association (SIA), projects reaching the 45-nm node in 2010 (corresponding to transistor gate lengths down to 18 nm and DRAM spacing of 45 nm).1 It is likely that a number of new technologies will evolve with further developments in nanofabrication. Many materials with minimum dimensions on the nanoscale have properties different than those observed for the bulk material. For example, quantum dots can exhibit single-electron tunneling carbon nanotubes can have high electrical conductivity and mechanical strength and thin polymer films can have glass-transition temperatures higher or lower than thick films. There is an expectation that new technologies will emerge from the fabrication of nanostructures and nanostructured materials and also that nanofabrication will have new applications beyond information processing and storage in areas such as optics, biomedicine, and materials science.

Different methods of nanofabrication:

Methods used to generate nanoscale structures and nanostructured materials are commonly characterized as “top-down” and



References: * C. F. Quate, H. Soh, Scanning Probe Lithography, Kluwer Academic Publishers, (2001). TK 7874 S648 2001 * L * J.A. Stroscio, Science, 254, 1319-26, (1991). * G. Binnig, C. Gerbert, C. Quate, Phys. Rev. Lett. 56 (1986) 930. * G. Binnig, H. Rohrer, Sci. Am. 253 (2) (1985) 40. * Phys. Lett. 8 (1999) 1107. * Lett. 65 (1994) 1775. * B. Cappella, H. Sturm, S.M. Weidner, Polymer 43 (2002) 4461. * S. Logothetidis, M. Gioti, S. Lousinian, S. Fotiadou, Thin Solid Films 482 * (2005) 126. * B. Cappella, H. Sturm, J. Appl. Phys. 91 (2002) 506. * W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564. * 200 (2006) 6400. * C. Charitidis, M. Gioti, S. Logothetidis, Macromol. Symp. 205 (2004) 239. * U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67 (1996) 3281. * B. Bhushan, Handbook of Nanotechnology, Springer, Germany, 2004, * p * 1460 S. Kassavetis et al. / Materials Science and Engineering C 27 (2007) 1456–1460 * Piner, R * Carpick, R. W.; Salmeron, M. Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. Chem. Rev. 1997, 97, 1163. * Bishop, A.; Nuzzo, R. G. Self-assembled Monolayers: Recent Developments and Applications. Curr. Opin. Colloid Interface Sci. 1996, 1, 127. * Kumar, A.; Abbott, N. L.; Kim., E.; Biebuyck, H. A.; Whitesides, G. M. Patterned Self-assembled Monolayers and Mesoscale Phenomena. Acc. Chem. Res. 1995, 28, 219. * Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Are single molecular wires conducting? Science 1996, 271, 1705. * Brainard, R. L.; Cobb, J.; Cutler, C. A. J. Photopolym. Sci. Technol. 2003, 16, 401. * Stulen, R. Proc. Electrochem. Soc. 1997, 97-3, 515. * Larruquert, J. I.; Keski-Kuha, R. A. M. Appl. Opt.2007, 41, 5398. * Montcalm, C.; Grabner, R. F.; Hudyma, R. M.; Schmidt, M. A.; Spiller, E.; Walton, C. C.; Wedowski, M.; Folta, J. A. Appl. Opt. 2002, 41, 3262. * Hoffnagle, J. A.; Hinsberg, W. D.; Houle, F. A.; Sanchez, M. I. J. Photopolym. Sci. Technol. 2003, 16, 373. * Huang, W.-S.; He, W.; Li, W.; Moreau, W. M.; Lang, R.; Medeiros, D. R.; Petrillo, K. E.; Mahorowala, A. P.; Angelopoulos, M.;Deverich, C.; Huang, C.; Rabidoux, P. A. Proc. SPIE-Int. Soc. Opt. Eng. 2003, 5130, 58. * Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 30. * Kraemer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367. * Nyffenegger, R. M.; Penner, R. M. Chem. Rev. 1995, 97, 1195. * Wouters, D.; Schubert, U. S. Angew. Chem., Int. Ed. 2004, 43, 2480. * Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3349. * Boncheva, M.; Bruzewicz, D. A.; Whitesides, G. M. Pure Appl. Chem. 2003, 75, 621. * Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D. Science 1998, 282, 2244. * Yin, Y. D.; Lu, Y.; Gates, B.; Xia, Y. N. J. Am. Chem. Soc. 2001, 123, 8718. * Ozin, G. A.; Yang, S. M. Adv. Funct. Mater. 2001, 11, 95. * Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. * Wilder, K.; Soh, H. T.; Atalar, A.; Quate, C. F. Rev. Sci. Instrum. 1999, 70, 2822. * Hong, S.; Mirkin, C. A. Science 2000, 288, 1808. * Ryu, K. S.; Wang, X.; Shaikh, K.; Bullen, D.; Goluch, E.; Zou, J.; Liu, C.; Mirkin, C. A. Appl. Phys. Lett. 2004, 85, 136. * Lee, K.-B.; Lim, J.-H.; Mirkin, C. A. J. Am. Chem. Soc. 2003, 125, 5588. * Smith, J. C.; Lee, K.-B.; Wang, Q.; Finn, M. G.; Johnson, J. E.; Mrksich, M.; Mirkin, C. A. Nano Lett. 2003, 3, 883. * Lee, K.-B.; Kim, E.-Y.; Mirkin, C. A.; Wolinsky, S. M. Nano Lett. 2004, 4, 1869. * Nam, J.-M.; Han, S. W.; Lee, K.-B.; Liu, X.; Ratner, M. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 1246. * Zhang, H.; Mirkin, C. A. Chem. Mater. 2004, 16, 1480. * Zhang, H.; Chung, S.-W.; Mirkin, C. A. Nano Lett. 2003, 3, 43. * Schwartz, P. V. Langmuir 2001, 17, 5971.

You May Also Find These Documents Helpful

Related Topics