DOI 10.1007/s10924-006-0042-3
ORIGINAL PAPER
Chemical Treatments of Natural Fiber for Use in Natural
Fiber-Reinforced Composites: A Review
Xue Li Æ Lope G. Tabil Æ Satyanarayan Panigrahi
Published online: 4 January 2007
Ó Springer Science+Business Media, LLC 2006
Abstract Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability.
However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption.
Therefore, chemical treatments are considered in modifying the fiber surface properties.
In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.
Keywords Fiber-reinforced composites Á Natural fiber Á Chemical modifications Á Chemical coupling agents Á Surface treatments
X. Li Á L. G. Tabil (&) Á S. Panigrahi
Department of Agricultural and Bioresource Engineering,
University of Saskatchewan, 57 Campus Drive, Saskatoon,
SK, Canada S7N 5A9 e-mail: lope.tabil@usask.ca
X. Li e-mail: xul214@mail.usask.ca
S. Panigrahi e-mail: sap382@mail.usask.ca
Introduction
Processing of plastic composites using natural fibers as reinforcement has increased dramatically in recent years [1–5]. Fiber-reinforced composites consist of fiber as reinforcement
References: 1. Singleton ACN, Baillie CA, Beaumont PWR, and Peijs T (2003) 2. Keller A (2003). Composites Sci Technol 63:1307 3 CT, Khor KA, Cheang P (2003). Biomaterials 24:2245 8 9. Bledzki AK, Gassan J (1999). Prog Polym Sci 24:221 10 14. van Voorn B, Smit HHG, Sinke RJ, de Klerk B (2001). 16. Frederick TW, Norman W (2004) Natural fibers plastics and composites 17. Muhammad P, Mohini MS (2003). Resour Conserv Recycl 39:325 18. Mohanty AK, Misra M, Drzal LT (2001). Compos Interfaces 8:313 19. Rowell RM, Young RA, Rowell JK (1997) Paper and composites from agro-based resources 20. Alvarez VA, Ruscekaite RA, Vazquez A (2003). J Compos Mater 37(17):1575 21. Ray D, Sarkar BK, Rana AK, Bose NR (2001). Bull Mater Sci 24:129 22. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) 23. Joseph K, Thomas S (1996). Polymer 37:5139 24 E, Vepoes I (2003). Compos Sci Technol 63:1241 25 (2000). Mater Sci Eng: A 277:77 ¨ 26. Jahn A, Schroder MW, Futing M, Schenzel K, Diepenbrock W (2002) (2000). Ind Crops Prod 12:39 28 30. Sarkar BK, Ray D (2004). Compos Sci Technol 64:2213 31 SK, Tipathy SS (2003). Compos Sci Technol 63:1377 33 37:1635 J Polym Environ (2007) 15:25–33 35. Lee GW, Lee NJ, Jang J, Lee KJ, Nam JD (2002). Compos Sci Technol 62:9 36. Debnath S, Wunder SL, McCool JI, Baran GR (2003). Dent Mater 19(5):441 37. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001). 39. Hill ASC, Abdul Khalil HPS, Hale MD (1998). Ind Crops Prod 8(1):53 40. Sreekala MS, Thomas S (2003). Compos Sci Technol 63(6):861 41. Manikandan Nair KC, Thomas S, Groeninckx G (2001). 43. Paul S, Puja N, Rajive G (2003). Molecules 8:374 44 Carvalho LH, Pothen L, Kala S, James B (2000). Frollini ˜ 45. Wang B (2004). MSc. Thesis. University of Saskatchewan 46 48. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) 49. Sreekala MS, Kumaran MG, Thomas S (2002). Compos A: Appl Sci Manuf 33:763 50. Li X, Panigrahi S, Tabil LG, Crerar WJ (2004). 2004 CSAE/ ASAE Annual Intersectional Meeting, Winnipeg, Canada,