It relates two vector quantities, force and acceleration. Both force and acceleration are vector quantities, important to understand that the acceleration of an object will always be in the same direction as the sum of forced to the object. An example would be if you use the same force to push a truck and push a car, the car will have more acceleration than the truck, because the car has less mass. It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the full shopping cart. Say you have three different sized balls. they all had different masses and you roll all three of them, using the same force. They will all have different accelerations, the smallest one having the greatest acceleration. So three different size but have the same acceleration, most likely, there was a different force. If the balls had the same mass, and you pushed them at different forces, the acceleration would differ.
Newton’s Third Law; the motion states that for every action there is a an equal and opposite reaction that acts with the same momentum and the opposite velocity. An example would be a suction cup and spring attached to it. Sticking the object to a window, having the spring be squeezed together. Eventually, depending on how powerful your suction cup is, the object would spring off