OPTIMAL SERVICE PRICING FOR A CLOUD CACHE
ABSTRACT:
Cloud applications that offer data management services are emerging. Such clouds support caching of data in order to provide quality query services. The users can query the cloud data, paying the price for the infrastructure they use. Cloud management necessitates an economy that manages the service of multiple users in an efficient, but also, resource economic way that allows for cloud profit. Naturally, the maximization of cloud profit given some guarantees for user satisfaction presumes an appropriate price-demand model that enables optimal pricing of query services. The model should be plausible in that it reflects the correlation of cache structures involved in the queries. Optimal pricing is achieved based on a dynamic pricing scheme that adapts to time changes. This paper proposes a novel price-demand model designed for a cloud cache and a dynamic pricing scheme for queries executed in the cloud cache. The pricing solution employs a novel method that estimates the correlations of the cache services in an time-efficient manner. The experimental study shows the efficiency of the solution.
EXISTING SYSTEM:
Existing clouds focus on the provision of web services targeted to developers, such as Amazon Elastic Compute Cloud (EC2), or the deployment of servers, such as Go Grid. There are two major challenges when trying to define an optimal pricing scheme for the cloud caching service. The first is to define a simplified enough model of the price demand dependency, to achieve a feasible pricing solution, but not oversimplified model that is not representative.
A static pricing scheme cannot be optimal if the demand for services has deterministic seasonal fluctuations. The second challenge is to define a pricing scheme that is adaptable to (i) Modeling errors, (ii) time-dependent model changes, and (iii) stochastic behavior of the application. The