The results showed that the doping of NiO to natural dolomite changed the lattice constants of CaO and MgO and made the MgO lattice distortion happen, which consequentially reduced the activation energy of the grain growth and promoted the sintering of the dolomite. Without additive the bulk density and the apparent porosity of dolomite clinker after the sintering at 1600°C were 3.30 g/cm3 and 3.4%, the crystal size of MgO only was 3.26 μm. But when the addition of NiO accounted to 0.75%, the bulk density and the apparent porosity of dolomite clinker after the sintering at 1600°C were 3.33 g/cm3 and 2.7%, respectively. At same time, the crystal size of MgO reached to 3.54 μm[78]. Zhang Han et al. [74] studied the effect of CaF2 on the sintering properties of MgO-CaO materials. The results show that with increasing the addition of CaF2, the bulk density of the samples increased, while the apparent porosity decreased and the densification of MgO-CaO materials promoted. When the amount of CaF2exceeded 2wt. %, the densification degree of samples decreased. The nature of CaF2promoting densification of MgO-CaO materials could be concluded as follows: due to its thermal defects, F-entered into the octahedral voids that existed in CaF2crystal structures and produced F-vacancies with positive charge, then combined with O2-vacancies by electrostatic attraction during the migration process, which increased the diffusion speed of O2-and enhanced the diffusion of MgO, then promoted the growth of periclase grains. A. Ghosh et al. [73] the studied the densification and properties of lime with V2O5 additions. For this…