North Dakota Asphalt Conference
Bismarck, ND
April 6, 2010
Perpetual Pavement
• Not a new concept
–Full-Depth
–Deep Strength
–Mill & Fill
MS-1
Perpetual Pavement Principles
}
1.5 - 3” SMA, OGFC or Superpave
4”
Zone
to
Of High
6” Compression
Max Tensile Strain
High Modulus
Rut Resistant Material
(Varies As Needed)
Flexible Fatigue Resistant
Material 3 - 4”
Pavement Foundation
Fatigue and Rutting
HMA
Repeated
Bending
Leads to
Fatigue Cracking
Base
Subgrade
Repeated
Deformation
Leads to
Rutting
Thinner pavements – High Strain
» Minimize Tensile Strain with Pavement Thickness
» Thin Asphalt Pavement = Higher Strain
» Higher Strain = Shorter Fatigue Life
Compressive
Strain
Indefinite
Fatigue
Life
Strain
Fatigue Life
Tensile Strain
Thicker pavements – Low Strain
» Minimize Tensile Strain with Pavement Thickness
» Thicker Asphalt Pavement = Lower Strain
» Strain Below Fatigue Limit = Indefinite Life
Compressive
Strain
Strain
Indefinite
Fatigue
Life
Fatigue Life
Tensile Strain
Mechanistic Performance
Criteria
Under ESAL
Limit Bending to < 65με
(Monismith, Von Quintus, Nunn,
Thompson)
Thick HMA
(> 8”)
Base (as required)
Subgrade
Limit Vertical Compression to < 200με (Monismith, Nunn)
It starts with the Base
› Bottom-up Design and Construction
› Foundation
» Stable Paving Platform
» Minimize Seasonal Variability and Volume
Change in Service
› Fatigue Resistant Lower Asphalt Layer
› Rut Resistant Upper Asphalt Layers
Fatigue Resistant Asphalt Base
» High Effective Asphalt Content Mixes = Greater Strain
Capability
» Modified Binders = Greater Strain Capability
High Asphalt
Content
Strain
Low Asphalt
Content
Fatigue Life
Indefinite Fatigue Life
Rut Resistant Upper Layers
• Aggregate Interlock
» Crushed Particles
» Stone-on-Stone Contact
• Binder
» High Temperature PG
»