The Problem and Its background
1.1 INTRODUCTION
The growing interest in the past to produce green materials that can reduce the problem involving waste materials by non-fibrous materials led to the development of natural fiber reinforced thermoplastic composites. Water Hyacinth (Eichhornia crassipes) also known as “water lily” is an aquatic plant which is found floating freely in the surface of fresh waters. Its rate of proliferation under certain circumstances is extremely rapid and cause infestations over large areas of water leading to a variety of problems. Hence, water hyacinth can be obtained without any additional cost. Water hyacinth is considered the most productive plant on earth as it yields more than 200 tons of dry matter per hectare per year under normal conditions. On water containing high concentrations of sewage, it yields up to 657 tons of dry matter per hectare. Water hyacinth fiber, the subject of the present study, is a waste product and found to be a potential for reinforcement in plastics.
Recently, a lot of researches produced fiber reinforced materials. Reinforcements with polyethylene, polypropylene and other thermoplastic polymers are mixed to produce efficient composites. Natural fibers including wood, kenaf, coir, pineapple, rice starch and etc. are used to combine with the polymers. Addition of fibers in the materials will affect the mechanical, thermal and water absorbent properties. Although, many researchers experimented with different types of organic materials, there have been a few studies on water hyacinth and its fibers.
A fiber based biocomposite material contains polymers reinforced with natural fiber using natural fibers in biocomposites has various advantages, among which are: a) the material made from natural fibers will make it partially biodegradable; b) some fiber-based composites is somewhat expensive to make; c) natural fiber, in this research water hyacinth, is currently disposed and