Example
Prove:1tantan1cot θ θ θ
+=+
By examining both sides of the equal sides, it appears that you want to begin with the leftside in order to create the right side.sin11tancoscos1cot1sin θ θ θ θ θ θ
++=++
=cossincoscossincossinsin θ θ θ θ θ θ θ θ
++
=cossincossincossin θ θ θ θ θ θ
++
=cossinsincoscossin θ θ θ θ θ θ
+ +
÷
=cossinsincossincos θ θ θ θ θ θ
++
· =sintancos θ θ θ
=
The reason why it was best to convert in terms of sine and cosine is because the resultanttan θ is a trig function that can be expressed that way. There will be times when you willhave to begin with the right side of the equal sign and work your way to create the leftside of the equal sign.
Try the following:
Prove.1.
1cossintancos x x x
− = 2. cottanseccsc α α α α
+ = 3. 2222 sectan122sin2cos θ θ θ θ
−=+
Answers:
2
11coscoscoscoscos x x x x x
− = − =
2
1coscos
−
=
2
sincos x
=sinsinsinsintansinsintancoscos
x x x x x x x x x x
= = = cossincottansincos α α α α α α
+ = + =
22
cossinsincossincos α α α α α α
+
=
22
cossin111cscsecsincossincossincos α α α α α α α α α α
+= = ⋅ =
= sec α csc α ( )
222222
sectan12sin2cos2sincos θ θ θ θ θ θ
−=++