R
A
R
A
MacMillan Group Meeting 4-27-11 by Anthony Casarez
Three Main Modes to Generate Radical Cations
Chemical oxidation
D A D A
Photoinduced electron transfer (PET) h! 1) D
A
D
A*
D
A
2) D
A
h!
D*
A
D
A
Electrochemical oxidation (anodic oxidation)
D
Anode
D
Chemical Oxidation
Stoichiometric oxidant: SET
O N Bn H N
Me
O N
Me
t-Bu
Ce(NH4)2(NO3)6 DME
Bn H
N
t-Bu
hexyl
hexyl
Me3SiO O
FeCl3, DMF
Me3SiO
MacMillan et al. Science 2007, 316, 582. Booker-Milburn, K. I. Synlett 1992, 809.
Photoinduced Electron Transfer
PET: Organic arene
CN NC OMe CN OMe
h!, MeCN, MeOH
CN
PET: Metal mediated h!, MgSO4, MeNO2, Ru(bpy)32+
R MeN NMe
MeO
MeO
R
Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931. Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.
Electrochemical Oxidation
Anodic oxidation
Me O
Me O
anode, MeOH DCM, NaClO4 2,6-lutidine
MeO MeO
N N H
anode, 2,6-lutidine
Et
N N H
MeCN, Et4NClO4
CO2Me
CO2Me
Et
Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463. M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.
Primary Fate of Radical Cations
Key Points
A radical cation will be generated from the electrophore on the molecule with the lowest oxidation potential (usually π or n, where n = nonbonding electrons). The chemistry of the resultant radical cation is determined from the functionality around its periphery. Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres to typical radical reactivity patterns.
Secondary reactions play a major role in our generation and use of radical cations.
Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.
Primary Fate of Radical