It is a two-step process. In the first step, the feedstock LPG or light naphtha is contacted in the trayed extractor vessel with an aqueous caustic solution containing UOP's proprietary liquid catalyst. The caustic solution reacts with mercaptans(RSH) and extracts them. The reaction that takes place in the extractor is: 2RSH + 2 NaOH → 2NaSR + 2 H2O The second step is referred to as regeneration and it involves heating and oxidizing of the caustic solution leaving the extractor. The oxidations results in converting the extracted mercaptans to organic disulfides (RSSR) which are liquids that are water-insoluble and are then separated and decanted from the aqueous caustic solution. The reaction that takes place in the regeneration step is: 4NaSR + O2 + 2H2O → 2RSSR + 4NaOH The feedstock entering the extractor must be free of any H2S. Otherwise, any H2S entering the extractor would react with the circulating caustic solution and interfere with the Merox reactions. Therefore, the feedstock is first "prewashed" by flowing through a batch of aqueous caustic to remove any H2S. The reaction that takes place in the prewash vessel is: H2S + NaOH → NaSH + H2O
Process flow: 1. The LPG (or light naphtha) feedstock enters the prewash vessel and flows upward through a batch of caustic which removes any H2S that may be present in the feedstock. The coalescer at the top of the prewash vessel prevents caustic from being entrained and carried out of the vessel. 2. The feedstock then enters the mercaptan extractor and flows upward through the contact trays where the LPG intimately contacts the downflowing Merox caustic that extracts the mercaptans from the LPG.
3. The sweetened LPG exits the tower and flows through: a caustic settler vessel to remove any entrained caustic, a water wash vessel to further remove any residual entrained caustic and a vessel containing a bed of rock salt to remove any