This section works out an example that includes all the topics we have discussed so far in this chapter.
A complete example of regression analysis.
PhotoDisc, Inc./Getty Images
A random sample of eight drivers insured with a company and having similar auto insurance policies was selected. The following table lists their driving experiences (in years) and monthly auto insurance premiums.
Driving Experience (years) Monthly Auto Insurance Premium
5 2 12 9 15 6 25 16
$64 87 50 71 44 56 42 60
a. Does the insurance premium depend on the driving experience or does the driving experience depend on the insurance premium? Do you expect a positive or a negative relationship between these two variables? b. Compute SSxx, SSyy, and SSxy. c. Find the least squares regression line by choosing appropriate dependent and independent variables based on your answer in part a. d. Interpret the meaning of the values of a and b calculated in part c. e. Plot the scatter diagram and the regression line. f. Calculate r and r2 and explain what they mean. g. Predict the monthly auto insurance premium for a driver with 10 years of driving experience. h. Compute the standard deviation of errors. i. Construct a 90% confidence interval for B. j. Test at the 5% significance level whether B is negative. k. Using α = .05, test whether ρ is different from zero.
Solution a. Based on theory and intuition, we expect the insurance premium to depend on driving experience. Consequently, the insurance premium is a dependent variable and driving experience is an independent variable in the regression model. A new driver is considered a high risk by the insurance companies, and he or she has to pay a higher premium for auto insurance. On average, the insurance premium is expected to decrease with an increase in the years of driving experience. Therefore, we expect a negative relationship between these two variables. In other words, both the population correlation