Preview

Renewable Energy

Good Essays
Open Document
Open Document
13893 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Renewable Energy
Energy Economics 40 (2013) S12–S23

Contents lists available at ScienceDirect

Energy Economics journal homepage: www.elsevier.com/locate/eneco

On the economics of renewable energy sources
Ottmar Edenhofer a,b,c,⁎, Lion Hirth a,d, Brigitte Knopf a, Michael Pahle a, Steffen Schlömer a, Eva Schmid a, Falko Ueckerdt a a Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany Economics of Climate Change, Technische Universität Berlin, Straße des 17, Juni 145, 10623 Berlin, Germany Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße 12-15, 10829 Berlin, Germany d Vattenfall GmbH, Chausseestraße 23, 10961 Berlin, Germany b c

a r t i c l e

i n f o

a b s t r a c t
With the global expansion of renewable energy (RE) technologies, the provision of optimal RE policy packages becomes an important task. We review pivotal aspects regarding the economics of renewables that are relevant to the design of an optimal RE policy, many of which are to date unresolved. We do so from three interrelated perspectives that a meaningful public policy framework for inquiry must take into account. First, we explore different social objectives justifying the deployment of RE technologies and review model-based estimates of the economic potential of RE technologies, i.e. their socially optimal deployment level. Second, we address pivotal market failures that arise in the course of implementing the economic potential of RE sources in decentralized markets. Third, we discuss multiple policy instruments curing these market failures. Our framework reveals the requirements for an assessment of the relevant options for real-world decision makers in the field of RE policies. This review makes it clear that there are remaining white areas on the knowledge map concerning consistent and socially optimal RE policies. © 2013 Elsevier B.V. All rights reserved.

Available online 21 September 2013 JEL classification: Q21 Q28 Q42



References: Arvizu, D., Bruckner, T., Chum, H., Edenhofer, O., Estefen, S., Faaij, A., Fischedick, M., Hansen, G., Hiriart, G., Hohmeyer, O., Hollands, K.G.T., Huckerby, J., Kadner, S., Killingtveit, Å., Kumar, A., Lewis, A., Lucon, O., Matschoss, P., Maurice, L., Mirza, M., Mitchell, C., Moomaw, W., Moreira, J., Nilsson, L.J., Nyboer, J., Pichs-Madruga, R., Sathaye, J., Sawin, J., Schaeffer, R., Schei, T., Schlömer, S., Seyboth, K., Sims, R., Sinden, G., Sokona, Y., von Stechow, C., Steckel, J., Verbruggen, A., Wiser, R., Yamba, F., Zwickel, T., 2011. Technical summary. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Borenstein, S., 2008. The market value and cost of solar photovoltaic electricity production. CSEM Working Paper 176. Borenstein, S., 2012. The private and public economics of renewable electricity generation. J. Econ. Perspect. 26 (1), 67–92. Braun, F.G., Schmidt-Ehmcke, J., Zloczysti, P., 2010. Innovative activity in wind and solar technology: empirical evidence on knowledge spillovers using patent data. DIW Berlin Discussion Paper No. 993 (http://papers.ssrn.com/sol3/papers.cfm?abstract_id= 1633875). Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Goss Eng, A., Lucht, W., Mapako, M., Masera Cerutti, O., McIntyre, T., Minowa, T., Pingoud, K., 2011. Bioenergy. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. International, U.S. and E.U. climate change control scenarios: results from EMF 22 [special issue]. In: Clarke, L., Böhringer, C., Rutherford, T.F. (Eds.), Enegy Economics, 31 (Supplement 2), pp. S63–S306. Cramton, P., Ockenfels, A., 2012. Economics and design of capacity markets for the power sector. Z. Energiewirtschaft 36, 113–134. Cramton, P., Stoft, S., 2006. The Convergence of Market Designs for Adequate Generating Capacity. http://www.cramton.umd.edu/papers2005-2009/cramton-stoft-marketdesign-for-resource-adequacy.pdf. Creutzig, F., Popp, A., Plevin, R., Luderer, G., Minx, J., Edenhofer, O., 2012a. Reconciling topdown and bottom-up modeling on future bioenergy deployment. Nat. Clim. Chang. 2, 320–327. Creutzig, F., von Stechow, C.D.K., Hunsberger, C., Bauer, N., Popp, A., Edenhofer, O., 2012b. Can bioenergy assessments deliver? Econ. Energy Environ. Policy 1 (2), 65–82. DeCesaro, J., Porter, K., 2009. Wind energy and power system operations: a review of wind integration studies to date. NREL Subcontract Report SR-550-47256. Edenhofer, O., Carraro, C., Hourcade, J.-C., Neuhoff, K., Luderer, G., Flachsland, C., Jakob, M., Popp, A., Steckel, J., Strohschein, J., Bauer, N., Brunner, S., Leimbach, M., Lotze-Campen, H., Bosetti, V., Cian, E.d., Tavoni, M., Sassi, O., Waisman, H., Crassous-Doerfler, R., Monjon, S., Dröge, S., Essen, H.v., Río, P.d., Türk, A., 2009. RECIPE — The Economics of Decarbonization. Synthesis Report. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., Criqui, P., Isaac, M., Kitous, A., Kypreos, S., Leimbach, M., Lessmann, K., Magné, B., Scrieciu, S., Turton, H., van Vuuren, D.P., 2010. The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J. 31 (Special Issue 1). Edenhofer, O., Seyboth, K., Creutzig, F., Schloemer, S., 2013. On the sustainability of renewable energy sources. Annu. Rev. Environ. Resour. http://dx.doi.org/10.1146/annurevenviron-051012-145344 (in press). European Commission, 2011. COMMUNICATION: Energy Roadmap 2050. http://eur-lex. europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF. Farmer, J.D., Trancik, J.E., 2007. Dynamics of technological development in the energy sector. London Accord Final Publication. In: Onstwedder, J.-P., Mainelli, M. (Eds.), Santa Fe Institute Working Paper #07-12-046. Fischedick, M., Schaeffer, R., Adedoyin, A., Akai, M., Bruckner, T., Clarke, L., Krey, V., Savolainen, I., Teske, S., Ürge-Vorsatz, D., Wright, R., 2011. Mitigation potential and costs. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Fischer, C., Newell, R.G., 2008. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag. 55 (2), 142–162. Flinkerbusch, K., Scheffer, F., 2012. Eine Bewertung verschiedener Kapazitätsmechanismen für den deutschen Strommarkt. Z. Energiewirtschaft 37, 13–25. Fripp, M., Wiser, R.H., 2008. Effects of temporal wind patterns in the value of windgenerated electricity in California and the northwest. IEEE Trans. Power Syst. 23 (2), 477-485. GE Energy, 2010. Western wind and solar integration study. NREL Subcontract Report SR550-47434. GEA, 2012. Summary for policymakers. In: Johansson, T.B., Nakicenovic, N., Patwardhan, A., Gomez-Echeverri, L. (Eds.), Global Energy Assessment (GEA). Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City. Gillingham, K., Sweeney, J., 2010. Market failure and the structure of externalities. In: Moselle, B., Schmalensee, R., Padilla, J. (Eds.), Harnessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy. RFF Press. Greene, R., Yatchew, A., 2012. Support schemes for renewable energy: an economic analysis. Econ. Energy Environ. Policy 1 (2). S22 O. Edenhofer et al. / Energy Economics 40 (2013) S12–S23 Mills, A., Wiser, R., 2012. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California. Ernest Orlando Lawrence Berkeley National Laboratory (http://www.csp-alliance.org/wp-content/uploads/2011/ 11/Changes-in-Economic-Value-of-Variable-Gen-at-High-Penetration-Levels.pdf). Moomaw, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K., Weir, T., 2011. Introduction. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Müsgens, F., Peek, M., 2011. Sind Kapazitätsmärkte in Deutschland erforderlich? - Eine kritische Analyse vor dem Hintergrund der Ökonomischen Theorie. Z. N. Energierecht 6/2011, 576–583. Neij, L., 2008. Cost development of future technologies for power generation—a study based on experience curves and complementary bottom-up assessments. Energy Policy 36 (6), 2200–2211. Nemet, G.F., 2009. Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy 37 (3), 825–835. Nicolosi, M., 2012a. The Economics of Renewable Electricity Market Integration. An Empirical and Model-Based Analysis of Regulatory Frameworks and Their Impacts on the Power Market. Universität zu Köln (PhD). Nicolosi, M., 2012b. Notwendigkeit und Ausgestaltungsmöglichkeiten eines Kapazitätsmechanismus für Deutschland. Kurzgutachten erstellt für das Umweltbundesamt.Ecofys GmbH (http://www.ecofys.com/files/files/ecofys_2012_ kapazitaetsmechanismen.pdf). Nordhaus, W.D., 2009a. Designing a friendly space for technological change to slow global warming. Snowmass Conference on Technologies to Combat Global Warming, Snowmass (CO), August 3–4. Nordhaus, W.D., 2009b. The perils of the learning model for modeling endogenous technological change. National Bureau of Economic Research Working Paper Series No. 14638 (http://www.nber.org/papers/w14638.pdf). Pahle, M., Knopf, B., Tietjen, O., Schmid, E., 2012. Kosten des Ausbaus der Erneuerbaren Energien: Eine Metaanalyse von Szenarien. (http://www.umweltdaten.de/ publikationen/fpdf-l/4351.pdf). Palmer, K., Burtraw, D., 2005. Cost-effectiveness of renewable electricity policies. Energy Econ. 27 (6), 873–894. Pérez-Arriaga, I.J., 2001. Long-term reliability of generation in competitive wholesale markets: a critical review of issues and alternative options. IIT Working PaperIIT00-098IT (June2001). Pérez-Arriaga, I.J., Meseguer, C., 1997. Wholesale marginal prices in competitive generation markets. IEEE Trans. Power Syst. 12, 710–717. Piscitello, L., Garrone, P., Wang, Y., 2012. Cross-country spillovers in the renewable energy sector. Paper to be presented at the DRUID 2012 on June 19 to June 21 at CBS, Copenhagen, Denmark (http://druid8.sit.aau.dk/acc_papers/8sqn3os3fph4j08s4ic461g60k36. pdf). REN21, 2012. Renewables 2012 Global Status Report (Paris: REN21 Secretariat). http:// www.map.ren21.net/GSR/GSR2012_low.pdf. Rodilla, P., Batlle, C., 2012. Security of electricity supply at the generation level: problem analysis. Energy Policy 40, 177–185. Rodrik, D., 2007. One Economics, Many Recipes: Globalization, Institutions, and Economic Growth. Princeton University Press. Sathaye, J., Lucon, O., Rahman, A., Christensen, J., Denton, F., Fujino, J., Heath, G., Kadner, S., Mirza, M., Rudnick, H., Schlaepfer, A., Shmakin, A., 2011. Renewable energy in the context of sustainable development. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Schmid, E., Pahle, M., Knopf, B., 2013. A Meta-Analysis of Renewable Electricity Generation in German Mitigaiton Scenarios. Energy Policy 61, 1151–1163. Sensfuß, F., Ragwitz, M., Genoese, M., 2008. The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy 36 (8), 3086–3094. Sims, R., Mercado, P., Krewitt, W., Bhuyan, G., Flynn, D., Holttinen, H., Jannuzzi, G., Khennas, S., Liu, Y., O 'Malley, M., Nilsson, L.J., Ogden, J., Ogimoto, K., Outhred, H., Ulleberg, Ø., Hulle, F.v., 2011. Integration of renewable energy into present and future energy systems. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Smith, C., Milligan, M., DeMeo, E., Parsons, B., 2007. Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 22 (3), 900–908. Stiglitz, J.E., 1990. Whither Socialism? MIT Press. Stoft, S., 2002. Power System Economics: Designing Markets for Electricity. IEEE Press.e. Stoughton, M., Chen, R., Lee, S., 1980. Direct construction of the optimal generation mix. IEEE Trans. Power Appar. Syst. 99 (2), 753–759. Sullivan, P., Krey, V., Riahi, K., 2013. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Rev. 1 (3), 157–163. Tavoni, M., Cian, E., Luderer, G., Steckel, J., Waisman, H., 2012. The value of technology and of its evolution towards a low carbon economy. Clim. Chang. 114 (1), 39–57. Ueckerdt, F., Hirth, L., Luderer, G., Edenhofer, O., 2013. System LCOE: what are the costs of variable renewables? USAEE Working Paper 2200572 (http://ssrn.com/abstract= 2200572). Ulph, A., Ulph, D., 2009. Optimal climate change policies when governments cannot commit. Discussion Paper 0909. University of St. Andrews. Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M., Skea, J., 2006. The Costs and Impacts of Intermittency: An Assessment of the Evidence on the Costs and Impacts of Intermittent Generation on the British Electricity Network. www.uwig.org/mwginternal/de5fs23hu73ds/progress?id=GxdIkw+r0n. Hausmann, R., Rodrik, D., 2003. Economic development as self-discovery. J. Dev. Econ. 72 (2), 603–633. Hirth, L., Ueckerdt, F., Edenhofer, O., 2013. Integration Costs and the Value of Wind Power. Thoughts on a valuation framework for variable renewable electricity sources. Energy Policy (submitted for publication). Hirth, L., 2013. The market value of variable renewables: the effect of solar wind power variability on their relative price. Energy Econ. 38, 218–236 (http://www.sciencedirect. com/science/article/pii/S0140988313000285). Hogan, W.W., 2005. On an “ENERGY ONLY” electricity market design for resource adequacy. Working Paper. Center for Business and Government John F. Kennedy School of Government Harvard University, Cambridge, Massachusetts 02138. Holttinen, H., Meibom, P., Orths, A., Lange, B., O 'Malley, M., Tande, J.O., Estanqueiro, A., Gomez, E., Söder, L., Strbac, G., Smith, J.C., van Hulle, F., 2011. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy 14 (2), 179–192. IPCC, 2011. Summary for policymakers. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Irwin, D.A., Klenow, P.J., 1994. Learning-by-doing spillovers in the semiconductor industry. J. Polit. Econ. 102 (6), 1200–1227. Jaffe, A., Newell, R.G., Stavins, R.N., 2005. A tale of two market failures: technology and environmental policy. Ecol. Econ. 54 (2–3), 164–174. Joskow, P.L., 2006. Competitive electricity markets and investment in new generating capacity. Working Papers 0609. Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research. Joskow, P.L., 2011. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 101 (3), 238–241. Junginger, M., van Sark, W., Faaij, A. (Eds.), 2010. Technological Learning in the Energy Sector. Lessons for Policy, Industry and Science. Edward Elgar, Cheltenham. Kalkuhl, M., Edenhofer, O., Lessmann, K., 2012. Learning or lock-in: optimal technology policies to support mitigation. Resour. Energy Econ. 34 (1), 1–23. Kalkuhl, M., Lessmann, K., Edenhofer, O., 2013. Renewable energy subsidies: secondbest policy or fatal aberration for mitigation? Resour. Energy Econ. 35 (3), 217–234. Knopf, B., Edenhofer, O., Barker, T., Bauer, N., Baumstark, L., Chateau, B., Criqui, P., Held, A., Isaac, M., Jakob, M., Jochem, E., Kitous, A., Kypreos, S., Leimbach, M., Magné, B., Mima, S., Schade, W., Scrieciu, S., Turton, H., van Vuuren, D., 2009. The economics of low stabilisation: implications for technological change and policy. In: Hulme, M., Neufeldt, H. (Eds.), Making Climate Change Work for Us — ADAM Synthesis Book. Cambridge University Press. Knopf, B., Luderer, G., Edenhofer, O., 2011. Exploring the feasibility of low stabilization targets. Wiley Interdiscip. Rev. Clim. Chang. 2 (4), 617–626. Knopf, B., Chen, H.-Y., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., Keppo, I., Koljonen, T., Schumacher, K., van Vuuren, D.P., 2013. Beyond 2020 — strategies for transforming the European energy system. Clim. Chang. Econ. 4 (4) (EMF28 special issue, in press). Krey, V., Clarke, L., 2011. Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim. Policy 11 (4), 1131–1158. Lamont, A., 2008. Assessing the long-term system value of intermittent electric generation technologies. Energy Econ. 30 (3), 1208–1231. Leprich, U., Hauser, E., Grashof, K., 2012. Kompassstudie Marktdesign Leitideen für ein Design eines Stromsystems mit hohem Anteil fluktuierender Erneuerbarer Energien. www.bee-ev.de/_downloads/publikationen/studien/2012/1212_BEEGPE-IZES-Kompassstudie-Marktdesign.pdf. Luderer, G., Bosetti, V., Jakob, M., Leimbach, M., Steckel, J.C., Waisman, H., Edenhofer, O., 2012. The economics of decarbonizing the energy system — results and insights from the RECIPE model intercomparison. Clim. Chang. 114 (1), 9–37. Luderer, G., Krey, V., Calvin, K., Merrick, J., Mima, S., Pietzcker, R., Van Vliet, J., Wada, K., 2013. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim. Chang. http://dx.doi.org/10.1007/s10584-013-0924-z (in press). Mai, T., Wiser, R., Sandor, D., Brinkman, G., Heath, G., Denholm, P., Hostick, D.J., Darghouth, N., Schlosser, A., Strzepek, K., 2012. Exploration of high-penetration renewable electricity futures. Renewable Electricity Futures Study, vol. 1. National Renewable Energy Laboratory, Golden, CO (NREL/TP-6A20-52409-1, http://www.nrel.gov/docs/ fy12osti/52409-1.pdf). Mai, T., Logan, J., Blair, N., Sullivan, P., Bazilian, M., 2013. RE-ASSUME A Decision Maker 's Guide to Evaluating Energy Scenarios, Modeling, and Assumptions. http://iea-retd. org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf. McCollum, D.L., Krey, V., Riahi, K., 2011. An integrated approach to energy sustainability. Nat. Clim. Chang. 1, 428–429 (December 2011). McCollum, D.L., Krey, V., Riahi, K., Kolp, P., Grubler, A., Makowski, M., Nakicenovic, N., 2013. Climate policies can help resolve energy security and air pollution challenges. Clim. Chang. 119 (2), 479–494. Milligan, M., Kirby, B., 2009. Calculating wind integration costs: separating wind energy value from integration cost impacts. NREL Technical Report TP-55046275. Milligan, M., Ela, E., Hodge, B.M., Kirby, B., Lew, D., Clark, C., DeCesaro, J., Lynn, K., 2011. Integration of variable generation, cost-causation, and integration costs. Electr. J. 24 (9), 51–63. O. Edenhofer et al. / Energy Economics 40 (2013) S12–S23 UNEP, 2011. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication — A Synthesis for Policy Makers. www.unep.org/greeneconomy. Verbruggen, A., Moomaw, W., Nyboer, J., 2011. Annex I: glossary, acronyms, chemical symbols and prefixes. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., Stechow, C.v. (Eds.), IPCC Special Report on Renewable Energy Sources and Climate S23 Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Yeh, S., Rubin, E.S., 2012. A review of uncertainties in technology experience curves. Energy Econ. 34 (3), 762–771. You, C.F., Xu, X.C., 2010. Coal combustion and its pollution control in China. Energy 35 (11), 4467–4472.

You May Also Find These Documents Helpful

  • Satisfactory Essays

    North Mountain Nursery

    • 176409 Words
    • 706 Pages

    The Annual Energy Outlook 2013 (AEO2013) was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.gov, 202/586-2222), Assistant Administrator of Energy Analysis; Paul D. Holtberg (paul.holtberg@ eia.gov, 202/586-1284), Team Leader, Analysis Integration Team, Office of Integrated and International Energy Analysis; Joseph A. Beamon (joseph.beamon@eia.gov, 202/586-2025), Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis; Sam A. Napolitano (sam.napolitano@eia.gov, 202/586-0687), Director, Office of Integrated and International Energy Analysis; A. Michael Schaal (michael.schaal@eia.gov, 202/586-5590), Director, Office of Petroleum, Natural Gas, and Biofuels Analysis; and James T. Turnure (james.turnure@eia.gov, 202/586-1762), Director, Office of Energy Consumption and Efficiency Analysis. Complimentary copies are available to certain groups, such as public and academic libraries; Federal, State, local, and foreign governments; EIA survey respondents; and the media. For further information and answers to questions, contact: Office of Communications, EI-40 Forrestal Building, Room 1E-210 1000 Independence Avenue, S.W. Washington, DC 20585 Telephone: 202/586-8800 (24-hour automated information line) E-mail: infoctr@eia.gov Fax: 202/586-0727 Website: www.eia.gov…

    • 176409 Words
    • 706 Pages
    Satisfactory Essays
  • Good Essays

    With the world’s primary energy needs set to grow by 55% by 2030, and electricity consumption to double over the next few decades, managing future need is a global challenge, and one of the most significant of our time. The International Energy Authority (IEA) estimates that $22 trillion of new investment will be needed by 2030. At the same time, there is the global challenge of climate change and the need to develop cleaner sources of energy in order to improve the health of our environment. There are two main ways of achieving this; measures such as emissions controls, carbon trading and green taxation to encourage a reduction in energy consumption and an increase in energy efficiency, this known as a ‘carrot and stick’ approach. The alternative to this is to develop new and radical technologies that are sustainable and bring energy security.…

    • 672 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Low Speed Wind Turbine

    • 12089 Words
    • 49 Pages

    | Renewable Energy Policy Network for the 21st Century, "Renewables 2012 Global Status Report," Paris, 2012.…

    • 12089 Words
    • 49 Pages
    Powerful Essays
  • Best Essays

    Tahvonen, O., & Salo, S. (2001). Economic growth and transitions between renewable and nonrenewable energy resources. European Economic Review,45(8), 1379 - 1398.…

    • 1065 Words
    • 5 Pages
    Best Essays
  • Powerful Essays

    Energy Market

    • 6329 Words
    • 26 Pages

    [14] Egenhofer, Christian. Turning Point: European Energy Policy. Center for European Policy Studies. 2002 Available at: http://www.british-energy.co.uk/documents/Turning_Point_-_European_energy_policy.pdf.…

    • 6329 Words
    • 26 Pages
    Powerful Essays
  • Good Essays

    Moreover, economically, wind power is said to be expensive because the initial investment on it is higher compared to fossil fuels. However, wind power is cheaper compared to other renewable energy sources. Statistic has shown that for 1 Megawatt (MW) of power, wind energy only cost $80 compared to solar and wave energy which cost $180 and $100 respectively (Peacock, n.d.). Since future technology guarantees the installation and maintenance price to only continue decreasing, the lifetime investment on wind power is much more lower (Nash, 2008). This proves that this type of power generation is affordable for everyone.…

    • 970 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Summary And Evaluation

    • 1254 Words
    • 4 Pages

    Mr Epstein made a value claim that 'environmentalist' leaders adopt a policy to eliminate 'dirty' fossil fuel industry, by backing up alternative energy: solar and wind. However, he argued that these sources of energy are unreliable, expensive and not abundant, unlike that of fossil fuels. As such, countries pay negative effects as they use these energy. In this inductive argument, he has used several statistics to substantiate his claims. These data…

    • 1254 Words
    • 4 Pages
    Better Essays
  • Good Essays

    Renewable energy is often not efficient and powerful enough compared to traditional power sources; the disadvantage present in energy systems such as solar and wind fail to win the energy revolution against the oil-based economy. The damage to the environment is a threat to life on Earth and we can no longer afford to be spectators. Given…

    • 430 Words
    • 2 Pages
    Good Essays
  • Best Essays

    solar energy paper

    • 1239 Words
    • 4 Pages

    Nersesian, R. L. (2007). Energy for the 21st Century: A Comprehensive Guide to Conventional and Alternative Sources. Armonk, New York: M. E. Sharpe.…

    • 1239 Words
    • 4 Pages
    Best Essays
  • Powerful Essays

    resersh paper

    • 2107 Words
    • 9 Pages

    Bailey, Ronald. "Overpaying for Green Power." Reason (Vol. 42, No. 1). May 2010: 56. SIRS…

    • 2107 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Many people are debating how to best meet energy needs in the United States. Some argue that the country must decrease its dependence on oil and invest in alternative sources of energy. The United States use tons of oil daily witch tends to be very expensive. Many people believe that to best meet energy needs would be to find alternative sources, such as wind, and solar power. The simple fact is, renewable and alternative energy should be a major investment for everyone. Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and comfort. Individuals and organizations choose to conserve energy to reduce energy costs and promote economic security. However, Industrial, and commercial users can increase energy use efficiency. Repeated use of alternative sources would help the United States to gradually clean up pollution and also save millions of dollars in the future.…

    • 395 Words
    • 2 Pages
    Satisfactory Essays
  • Best Essays

    The Politics of Motivation

    • 6851 Words
    • 28 Pages

    Bolsen, Toby, James N. Druckman, and Fay Lomax Cook. 2011. “Opinions About Energy Policy.” Unpublished paper, Northwestern University.…

    • 6851 Words
    • 28 Pages
    Best Essays
  • Better Essays

    Renewable energy sources such as wind energy, biomass, water energy and solar energy are sources of energy that produces a microscopic amount of pollution compared to fossil fuels such as coal. The only downside to these energy sources is the cost. In the article, “The Importance of Using Renewable Energy in the Form of Biomass” by Gageanu et al, they say, “The transition towards renewable energy systems seems more and more possible as their costs decreases while the price of oil and natural gas continues to fluctuate” (159). The cost of these sources of energy are why we cannot discontinue using coal, but as the cost of these sources goes down we can start relying on them more. Also in the article, Gageanu et al, say “The potential of renewable energy sources is huge, because these sources can surpass many times the global demand for energy” (159). Eventually, fuels such as oil and coal will run out so we need to work more on discovering how to reduce the cost of these products to allow for energy that is safe, clean, and inexpensive. By slowly relying more on renewable energy we can still use coal, but also start to reduce our environmental impact caused by using fossil fuels as energy…

    • 1381 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Solar Energy

    • 3312 Words
    • 14 Pages

    [2] Badcock, J., and Lenzen, M. (2010). Subsidies for electricity-generating technologies: A review. Energy Policy, 38, 5038-5047.…

    • 3312 Words
    • 14 Pages
    Powerful Essays
  • Good Essays

    Initiative critics claim that solar electricity is too expensive, and that the money spent on solar incentives would be better spent on other energy options. These critics, including Severin Borenstein, whose views appear on this page, assume electricity produced from natural gas and coal-fired power plants would cost today what it cost in 2001- 2005, thus ignoring the major increases in the price of oil and power-plant construction costs. Nor do they include the cost of continued reliance on fossil fuels, including the impacts of global climate change.…

    • 742 Words
    • 3 Pages
    Good Essays