H
A
P
T
E
R
3
RESISTIVE NETWORK ANALYSIS
hapter 3 illustrates the fundamental techniques for the analysis of resistive circuits. The chapter begins with the definition of network variables and of network analysis problems. Next, the two most widely applied methods— node analysis and mesh analysis—are introduced. These are the most generally applicable circuit solution techniques used to derive the equations of all electric circuits; their application to resistive circuits in this chapter is intended to acquaint you with these methods, which are used throughout the book. The second solution method presented is based on the principle of superposition, which is applicable only to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is explored, which leads to a discussion of maximum power transfer in electric circuits and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At the conclusion of the chapter, you should have developed confidence in your ability to compute numerical solutions for a wide range of resistive circuits. The following box outlines the principal learning objectives of the chapter.
81
82
Chapter 3
Resistive Network Analysis
➲ Learning Objectives
1. 2. 3. 4. 5. 6. Compute the solution of circuits containing linear resistors and independent and dependent sources by using node analysis. Sections 3.2 and 3.4. Compute the solution of circuits containing linear resistors and independent and dependent sources by using mesh analysis. Sections 3.3 and 3.4. Apply the principle of superposition to linear circuits containing independent sources. Section 3.5. Compute Thévenin and Norton equivalent circuits for networks containing linear resistors and independent and dependent sources. Section 3.6. Use equivalent-circuit ideas to compute the maximum power transfer between a source and a load. Section 3.7. Use the concept of equivalent circuit to determine voltage,