Preview

Scilab Optimization

Good Essays
Open Document
Open Document
1166 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Scilab Optimization
Scilab Datasheet

Optimization in Scilab

Scilab provides a high-level matrix language and allows to define complex mathematical models and to easily connect to existing libraries. That is why optimization is an important and practical topic in Scilab, which provides tools to solve linear and nonlinear optimization problems by a large collection of tools.

Overview of the industrial-grade solvers available in Scilab and the type of optimization problems which can be solved by Scilab.
Objective Linear Bounds y Equality l Inequalities l Problem size m m l l y Nonlinear s Gradient needed y n Solver linpro quapro qld qpsolve optim neldermead optim_ga fminsearch optim_sa lsqrsolve leastsq optim/"nd" optim_moga semidef lmisolve

Quadratic

y

l

l

s Nonlinear Least Squares Min-Max Multi-Obj. Semi-Def. y y l*

n

l m s l* l* l l

optional y n n

For the constraint columns, the letter "l" means linear, the letter "n" means nonlinear and "l*" means linear constraints in spectral sense. For the problem size column, the letters "s", "m" and "l" respectively mean small, medium and large.

Focus on nonlinear optimization w The optim function solves optimization problems with nonlinear objectives, with or without bound constraints on the unknowns. The quasi-Newton method optim/"qn" uses a Broyden-Fletcher-Goldfarb-Shanno formula to update the approximate Hessian matrix. The quasi-Newton method has a O(n²) memory requirement. The limited memory BFGS algorithm optim/"gc" is efficient for large size problems due to its memory requirement in O(n). Finally, the optim/"nd" algorithm is a bundle method which may be used to solve unconstrained, non-differentiable problems. For all these solvers, a function that computes the gradient g must be provided. That gradient can be computed using finite differences based on an optimal step with the derivative function, for example. w The fminsearch function is based on the simplex algorithm of Nelder and Mead (not

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Busn312 Hw3A

    • 727 Words
    • 3 Pages

    Linear programming problems have a.|linear objective functions, non-linear constraints.| b.|non-linear objective functions, non-linear constraints.| c.|non-linear objective functions, linear constraints.| d.|linear objective functions, linear constraints.| ____C 7. The first step in formulating a linear programming problem is a.|Identify any upper or lower bounds on the decision variables.| b.|State the constraints as linear combinations of the decision variables.| c.|Understand the problem.| d.|Identify the decision variables.| e.|State the objective…

    • 727 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    OPRE/411 Week 4

    • 379 Words
    • 2 Pages

    1. Use Solver in EXCEL to solve each of the following linear programming problems. To do so,…

    • 379 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Acme

    • 1450 Words
    • 8 Pages

    References: Knode, C.S. (2011). Linear programming - Part 1 - Formulating the problem [video]. Retrieved from: http://vimeo.com/duffer44/linear-programming-part-1…

    • 1450 Words
    • 8 Pages
    Better Essays
  • Satisfactory Essays

    Mat 540 Quiz 4

    • 1474 Words
    • 6 Pages

    The standard form for the computer solution of a linear programming problem requires all variables to be to the right and all numerical values to be to the left of the inequality or equality sign…

    • 1474 Words
    • 6 Pages
    Satisfactory Essays
  • Good Essays

    2- Graphical solution to linear programming problems can handle problems that involve any number of decision variables.…

    • 715 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Week 8 Assignment 1

    • 783 Words
    • 8 Pages

    We are asked to formulate and solve the linear program in excel, write the sensitivity ranges for…

    • 783 Words
    • 8 Pages
    Good Essays
  • Good Essays

    The objective function and all constraints are specified correctly in the model and clearly described…

    • 578 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Question 1 Graphical solution (16 marks) For a linear programming model given below: Decision variables x1  Units of product 1 to produce. x2 – Units of product 2 to produce. Objective function Maximize 4.0x1 + 3.6x2 Constraints Constraint 1: 11x1 + 5x2 > 55 Constraint 2: 3x1 + 4x2 < 36 Constraint 3: 4x1 – 9x2 < 0 Nonnegativity: x1, x2 >= 0 Solve this linear programming model by using the graphical approach (Graph paper is provided on the next page). For your graphical solution,  Label the axes.  Draw and label each constraint. Show your procedure of drawing Constraint 3 only.  For each constraint line, determine and label which side is feasible. Briefly explain how to determine the feasible side for Constraint 3 only.  Shade and label the feasible region.  Identify all feasible corner points and determine the coordinates of each feasible corner point. Show only your calculations for the corner point determined by Constraints 1 and 2.  Determine the optimal solution and objective function value.  For all calculations in this question, please…

    • 2847 Words
    • 12 Pages
    Good Essays
  • Powerful Essays

    One requirement of a linear programming problem is that the objective function must be expressed as a linear equation.…

    • 1510 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    104 Syllabus

    • 1947 Words
    • 13 Pages

    learn to use Excel add-ins for solving constrained optimization problems and running Monte Carlo simulations.…

    • 1947 Words
    • 13 Pages
    Powerful Essays
  • Good Essays

    Mr. Ramesh Chandra is a Software Development Project Manager in one of the renowned Indian Software Services Company, namely “ABC Technologies”. The company’s business division has recently won a project from a major…

    • 1401 Words
    • 6 Pages
    Good Essays
  • Satisfactory Essays

    Linear programming, the ability to find the smallest or biggest possible value under some constraints, is used in a typical optimization problem. In business this method helps to optimize solutions for politics, transportation scheduling, hospital stuffing, purchasing and many other problems. In biotechnology the same equation is used to optimize cell-factories, enabling the production of drugs, plastics, or any desired products.…

    • 501 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Accuvera Xcal

    • 630 Words
    • 3 Pages

     Business requirement  SmartPhone users are key revenue generating subscribers for an operator  Android will reach a market share of 50% of the smartphone market in 2015, according to iResearch (Computex – 24 June 2011)  Deliver the best possible user experience for value-added services and applications  Simulate real users doing real things on real devices  Test from the end user’s perspective any service  Identify issues that affect user experience  Pinpoint performance and availability issues  Speed up issue resolution  Reduce churn…

    • 630 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    Protac

    • 827 Words
    • 4 Pages

    Veremos ahora la utilización de Solver para resolver casos de Programación Lineal, aplicándolas a un ejemplo muy elemental, tomado del libro de Eppen, Gould y Schmidt, Investigación de Operaciones en la Ciencia Administrativa, 3ra edición, Editorial Prentice Hall. En éste y en otros libros de Investigación Operativa, se encontrarán numerosas aplicaciones de Programación Lineal y no Lineal. Nota Las inestabilidades (por malas soluciones iniciales) del algoritmo de optimización no lineal no se presentan en casos de Programación Lineal, dado que Solver utiliza el Método Simplex. El Modelo de la Protrac • La Protrac Inc., fabrica dos tipos de productos químicos, E y F, cuya utilidad neta es de $5000 y $4000 por tonelada respectivamente. • Ambos pasan por operaciones de 2 departamentos de producción, que tienen una disponibilidad limitada. • El departamento A dispone de 150 horas mensuales; cada tonelada de E utiliza 10 horas de este departamento, y cada tonelada de F, 15 horas. • El departamento B tiene una disponibilidad de 160 horas mensuales. Cada tonelada de E precisa de 20 horas, y cada tonelada de F precisa de 10 horas para su producción. • Para la producción global de E y F, se deberán utilizar al menos 135 horas de verificación en el próximo mes; el producto E precisa de 30 horas y F de 10 horas de verificación por tonelada. • La alta gerencia ha decretado que es necesario producir al menos una tonelada de F por cada 3 de…

    • 827 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The fourth stage would be to derive the optimal solution of the model through the use of a standard computer package, or specially developed algorithm. Different numeric scenarios will be used to establish sensitivity. In addition, checks should be done to ensure the speed of…

    • 426 Words
    • 2 Pages
    Good Essays