General Chemistry 101 (CHEM 101), ISP SCUHS
Report 2
September 15, 2013
Abstract
Mixtures are made up of substances or components. If the mixture is fairly uniform in composition, properties, and its overall appearance, it is homogenous. If the component parts are clearly separated, it is heterogeneous. In order to identify the components in a mixture, methods must be used to sort out the components. However, the same methods will not work for sorting all substances. Four different processes would be employed to sort soluble and insoluble components in the following experiment.
Introduction
Matter that people encounter in everyday life consists of mixtures of different substances. …show more content…
Homogeneous mixtures are those that are uniform in composition, properties, and appearance throughout. Heterogeneous mixtures do not have the same composition, properties and appearance. Mixtures are characterized by two different properties: each of the substances in the mixture retains its chemical identity and mixtures are separable into these components by physical means, from heating, freezing, drying, etc. If one of the substances in a mixture exceeds the amounts of the other substances in the mixture you call it an impure substance and the other substances in the mixture are impurities. The preparation of compounds usually involves their separation or isolation from reactants or other impurities. The separation of the components of mixtures is based upon the fact that each component has different physical properties. The components of mixtures are always pure substances, either compounds or elements and each pure substance will possess a unique set of properties. Similarly, every crystal of a pure substance melts at a specific temperature and a given pressure, and every pure substance boils at a specific temperature and a given pressure. There are four …show more content…
Obtain mass of beaker using the balance.
7. Add 15 mL of H20 to the mixture in the evaporating dish and stir gently
8. Decant the liquid into the beaker making sure not to transfer any of the solid into the beaker.
9. Add another 15 mL of H20 to the mixture in the evaporating dish and stir gently. Decant the liquid again into the beaker making sure not to transfer any of the solid into the beaker to extract NaCl.
10. Place beaker with sodium chloride solution onto heat plate and heat until water evaporates. Remove from heat and allow to cool. Weigh beaker. Difference between this weight and the weight of the empty beaker is the amount of NaCL in the mixture.
11. Take evaporating dish with SiO4 and heat until dry in oven. Once dry, remove evaporating dish from oven and allow to cool. Obtain the mass of SiO2 by weighting the evaporating dish with cooled mixture and subtracting mass of empty evaporating dish obtained earlier.
12. Find percent of NH4Cl, NaCl, and SiO2 in mixture by taking mass of each substance and dividing by the mass of the original sample.
Results: Separation of the Components of a Mixture
A. Mass of Evaporating Dish and Original Sample 41.606