T
The Solar System consists of the Sun and the astronomical objects gravitationally bound in orbit around it, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. The vast majority of the system's mass (well over 99%) is in the Sun. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. The two …show more content…
The principle of radioactive dating is simple: The content of radioactive elements in a given material decreases with time, as the element gives off radiation (alpha, beta or gamma) and thereby changes its natureby turning it into a "daughter" element. By measuring the amount of a radioactive element and its daughter element (or elements) an estimate can be made about how much of the original amount of radioactive element remains. From the rate of decay (measured by determining the activity) a "half-life" is estimated for each radioactive element. This is the time it takes for one-half of the element in question to "decay" into a daughter element. By using different decay series with different half-lives (uranium-238 to lead-206; uranium-235 to lead-207; thorium-232 to lead-208; rubidium-87 to strontium-87; potassium-40 to argon-40) the estimates can be double-checked and greatly refined (see figure …show more content…
Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later been captured by their planets. Still others, as the Earth's Moon, may be the result of giant collisions. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. The positions of the planets often shifted, and planets have switched places.[2] This planetary migration now is thought to have been responsible for much of the Solar System's early evolution.
In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a red giant), before casting off its outer layers as a planetary nebula, and leaving behind a stellar remnant known as a white dwarf. In the far distant future, the gravity of passing stars gradually will whittle away at the Sun's retinue of planets. Some planets will be destroyed, others ejected into interstellar space. Ultimately, over the course of trillions of years, it is likely that the Sun will be left with none of the original bodies in orbit around