Dr. M.R. MODARRES RAZAVI, Ferdowsi University of Mashhad, Faculty of Engineering. P.O. Box 91775-1111, Mashhad, IRAN. m-razavi@ferdowsi.um.ac.ir
SUMMARY The way in which position of spark plug affects combustion in spark ignition engine was studied by using the developed quasi-dimensional cycle simulation (using two-zone burning model) program. The purpose of this paper is to model the geometric interaction between the propagating flame and the general cylindrical combustion chamber. Eight different cases were recognized. Appropriate equations to calculate the flame area (Af), the burned and the unburned volume (Vb & Vu) and the heat transfer areas related to the burned and unburned regions were derived and presented for each case. Predicted results for the Paykan, 1600 cc engine are presented and compared qualitatively with the predicted results of the reference [1].
INTRODUCTION In recent years the combined effects of environmental legislation and the energy saving demands have led to a major expansion of research and development work in order to make a better fuel combustion, and reduce noise and pollutant emissions. In this context many codes were developed to simulate internal combustion engines, such as quasi-dimensional models [2-4] and two or three, dimensional codes, which classified as CFD codes [5-7]. Although the CFD codes (like KIVA) permit to simulate very well the physical phenomena involved in engines, but the long time needed for calculation is one of their shortages. In opposition the quasi-dimensional models (like SAPENG used in this research) are fast execution models, which can be used extensively by automotive industry in order to develop engine design and filling and emptying operation very fast. The purpose of this work is to determine the effect of spark plug position on the burning process of disc combustion chamber geometry in SI engines by introducing some algebraic