Life, 53: 85–98, 2002 Copyright c 2002 IUBMB 1521-6543/02 $12.00 + .00 DOI: 10.1080/10399710290038972
Review Article
Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites
Thomas K. Harris1 and George J. Turner2
Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 2 Department of Physiology and Biophysics and the Neurosciences Program, University of Miami School of Medicine, Miami, Florida
1
Summary In protein and RNA macromolecules, only a limited number of different side-chain chemical groups are available to function as catalysts. The myriad of enzyme-catalyzed reactions results from the ability of most of these groups to function either as nucleophilic, electrophilic, or general acid–base catalysts, and the key to their adapted chemical function lies in their states of protonation. Ionization is determined by the intrinsic pKa of the group and the microenvironment created around the group by the protein or RNA structure, which perturbs its intrinsic pKa to its functional or apparent pKa . These pKa shifts result from interactions of the catalytic group with other fully or partially charged groups as well as the polarity or dielectric of the medium that surrounds it. The electroReceived 26 November 2001; accepted 28 January 2002. Address correspondence to Thomas K. Harris, University of Miami School of Medicine, Department of Biochemistry and Molecular Biology (R-629), P. O. Box 016129, Miami, FL 33101-6129, USA. Fax: 305-243-3955. E-mail: tkharris@miami.edu
static interactions between ionizable groups found on the surface of macromolecules are weak and cause only slight pKa perturbations (2 units) and are the subject of this review. The magnitudes of these pKa perturbations are analyzed with respect to the structural details of the active-site microenvironment and the energetics of the reactions that they catalyze. IUBMB Life, 53: 85–98, 2002 Keywords
References: 1. Jencks, W. P. (1987) Catalysis in Chemistry and Enzymology. Dover Publications, Inc., New York. 2. Fersht, A. (1999) Structure and Mechanism in Protein Science. W. H. Freeman and Co., New York. 3. Jencks, W. P., and Regenstein, J. (1968) In CRC Handbook of Biochemistry (Sober, H. A., ed). pp. J150–J189. Chemical Rubber Co., Cleveland, OH. 4. Saenger, W. (1988) Principles of Nucleic Acid Structure. Springer-Verlag, New York. 5. Richter, H.-T., Brown, L. S., Needleman, R., and Lanyi, J. K. (1996) A linkage of the pK a ’s of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry 35, 4054–4062. 6. Sz´ raz, S., Oesterhelt, D., and Ormos, P. (1994) pH induced structural a changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. Biophys. J. 67, 1706–1712. 7. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D., and Heberle, J. (1999) In situ determination of transient pK a changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflectio Fouriertransform infrared spectroscopy. Proc. Natl. Acad. Sci. USA 96, 5498– 5503. 8. Jeng, M.-F., and Dyson, H. J. (1996) Direct measurement of the aspartic acid 26 pK a for reduced Escherichia coli thioredoxin by 13 C NMR. Biochemistry 35, 1–6. 9. Qin, J., Clore, G. M., and Gronenborn, A. M. (1997) Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NFκB. Biochemistry 35, 7–13. 10. Thornburg, L. D., Henot, F., Bash, D. P., Hawkinson, D. C., Bartel, S. D., and Pollack, R. M. (1998) Electrophilic assistance by Asp-99 of 3-oxo- 5 steroid isomerase. Biochemistry 37, 10499–10506. PERTURBED pK a VALUES IN ENZYME ACTIVE SITES 29. Sun, S., and Toney, M. D. (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38, 4058–4065. 30. Liu, Y., Thoden, J. B., Kim, J., Berger, E., Gulick, A. M., Ruzicka, F. J., Holden, H. M., and Frey, P. A. (1997) Mechanistic roles of tyrosine 149 and serine 142 in UDP-galactose 4-epimerase from E. coli. Biochemistry 36, 10675–10684. 31. Mizuguchi, H., Hayashi, H., Okada, K., Miyahara, I., Hirotsu, K., and Kagamiyama, H. (2001) Strain is more important than electrostatic interaction in controlling the pK a of the catalytic group in aspartate aminotransferase. Biochemistry 40, 353–360. 32. Druckmann, S., Ottolenghi, M., Pande, A., Pande, J., and Callender, R. H. (1982) Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry 21, 4953–4959. 33. Brown, L. S., and Lanyi, J. K. (1996) Determination of the transiently lowered pK a of the retinal Schiff base during the photocycle of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 93, 1731–1734. 34. Highbarger, L. A., and Gerlt, J. A. (1996) Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pK a of active-site lysine 115. Biochemistry 35, 41–46. 35. Barbas, III, C. F., Heine, A., Zhong, G., Hoffman, T., Gramatikova, S., Bjornestedt, R., List, B., Anderson, J., Stura, E. A., Wilson, I. A., Lerner, R. A. (1997) Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092. 36. Muth, G. W., Ortoleva-Donnelly, L., and Strobel, S. A. (2000) A single adenosine with a neutral pK a in the ribosomal peptidyl transferase center. Science 289, 947–950. 37. Perrotta, A. T., Shih, I.-H., and Been, M. D. (1999) Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123– 126. 38. Tanford, C. (1961) Physical Chemistry of Macromolecules. John Wiley and Sons, Inc., New York. 39. Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Makamura, H., Ikehara, M., Matsuzaki, T., and Morikawa, K. (1992) Structural details of ribonuclease H from Escherichia coli as refine to an atomic resolution. J. Mol. Biol. 223, 1029–1052. 40. Kokesh, F. C., and Westheimer, F. H. (1971) A reporter group at the active site of acetoacetate decarboxylase. II. Ionization constant of the amino group. J. Am. Chem. Soc. 93, 7270–7274. 41. Frey, P. A., Kokesh, F. C., and Westheimer, F. H. (1971) A reporter group at the active site of acetoacetate decarboxylase. I. Ionization constant of the nitrophenol. J. Am. Chem. Soc. 93, 7266–7269. 42. Stamper, C. G. F., Morollo, A. A., and Ringe, D. (1998) Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine. Biochemistry 37, 10438–10445. 43. Cleland, W. W., and Kreevoy, M. M. (1994) Low-barrier hydrogen bonds and enzymatic catalysis. Science 264, 1887–1890. 44. Harris, T. K., and Mildvan, A. S. (1999) High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods. Proteins 35, 275–282. 45. Frey, P. A., and Cleland, W. W. (1998) Are there strong hydrogen bonds in aqueous solutions? Bioorg. Chem. 26, 175–192. 46. Cassidy, C. S., Lin, J., and Frey, P. A. (1997) A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond. Biochemistry 36, 4576–4558. 47. Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) The iminepyridine torsion of the pyridoxal 5 -phosphate Schiff base of aspartate aminotransferase lowers its pK a in the unliganded enzyme and is crucial for the successive increase in the pK a during catalysis. Biochemistry 37, 15076–15085. 48. Wada, A. (1976) The α-helix as an electric macro-dipole. Adv. Biophys. 9, 1–63. 49. Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C. (1978) The α-helix dipole and the properties of proteins. Nature (London) 273, 443–446. 97 50. Lodi, P. J., and Knowles, J. R. (1991) Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: structural origins and catalytic implications. Biochemistry 30, 6948–6956. 51. Davenport, R. C., Bash, P. A., Seaton, B. A., Karplus, M., Petsko, G. A., and Ringe, D. (1991) Structure of the triosephosphate isomerasephosphoglycolohydroxamate complex: an analog of the intermediate on the reaction pathway. Biochemistry 30, 5821–5826. 52. Sancho, J., Serrano, L., and Fersht, A. R. (1992) Histidine residues at the N- and C-termini of α-helices: perturbed pK a s and protein stability. Biochemistry 31, 2253–2258. 53. Stites, W. E., Gittis, A. G., Lattman, E. E., and Shortle, D. (1991) In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J. Mol. Biol. 221, 7–14. 54. Garci´ -Moreno, E. B., Dwyer, J. J., Gittis, A. G., Lattman, E. E., Spencer, a D. S., and Stites, W. E. (1997) Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys. Chem. 64, 211–224. 55. Dwyer, J. J., Gittis, A. G., Karp, D. A., Lattman, E. E., Spencer, D. S., Stites, W. E., and Garci´ -Moreno, E. B. (2000) High apparent dielectric constants in a the interior of a protein reflec water penetration. Biophys. J. 79, 1610–1620. 56. Rashin, V., and Honig, B. (1985) Reevaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588–5593. 57. Friedman, H. L., and Krishan, C. V. (1973) In Water. A Comprehensive Treatise (Franks, F., ed). Vol. 3, pp. 1–118. Plenum Press, New York. 58. Bone, S., and Pethig, R. (1982) Dielectric studies of the binding of water to lysozyme. J. Mol. Biol. 57, 571–575. 59. Bone, S., and Pethig, R. (1985) Dielectric studies of protein hydration and hydration-induced fl xibility. J. Mol. Biol. 181, 323–326. 60. Harvey, S. C., and Hoekstra, P. (1972) Dielectric relaxation spectra of water absorbed on lysozyme. J. Chem. Phys. 76, 2987–2994. 61. Gilson, M. K., and Honig, B. H. (1986) The dielectric constant of a folded protein. Biopolymers 25, 2097–2119. 62. L¨ ffle , G., Schreiber, H., and Steinhauser, O. (1997) Calculation of the o dielectric properties of a protein and its solvent: theory and a case study. J. Mol. Biol. 270, 520–534. 63. Simonson, T., and Perahia, D. (1995) Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc. Natl. Acad. Sci. U.S.A. 92, 1082–1086. 64. Warshel, A. (1981) Calculations of enzyme reactions: calculations of pK a , proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20, 3167–3177. 65. Warshel, A., Russell, S. T., and Churg, A. K. (1984) Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc. Natl. Acad. Sci. USA 81, 4785–4789. 66. Kim, S. W., Cha, S.-S., Cho, H.-S., Kim, J.-S., Ha, N.-C., Cho, M.-J., Joo, S., Kim, K. K., Choi, K, Y., and Oh, B.-H. (1997) High-resolution crystal structures of 5 -3-ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry 36, 14030–14036. 67. Wu, Z. R., Ebrahimian, S., Zawrotny, M. E., Thornburg, L. D., PerezAlvarado, G. C., Brothers, P., Pollack, R. M., and Summers, M. F. (1997) Solution structure of 3-oxo- 5 -steroid isomerase. Science 276, 415–418. 68. Massiah, M. A., Abeygunawardana, C., Gittis, A. G., and Mildvan, A. S. (1998) Solution structure of 5 -3-ketosteroid isomerase complexed with the steroid 19-nortestosterone hemisuccinate. Biochemistry 37, 14701–14712. 69. Zhao, Q., Abeygunawardana, C., Talalay, P., and Mildvan, A. S. (1996) NMR evidence for the participation of a low-barrier hydrogen bond in the mechanism of 5 -3-ketosteroid isomerase. Proc. Natl. Acad. Sci. U.S.A. 93, 8220–8224. 70. Stivers, J. T., Abeygunawardana, C., Mildvan, A. S., Hajipou, G., and Whitman, C. P. (1996) 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pK a values of active site residues. Biochemistry 35, 814–823. 71. Taylor, A. B., Czerwinski, R. M., Johnson, W. H., Jr., Whitman, C. P., and Hackert, M. L. (1998) Crystal structure of 4-oxalocrotonate tautomerase ° inactivated by 2-oxo-3-pentynoate at 2.4 A resolution: analysis and implications for the mechanism of inactivation and catalysis. Biochemistry 37, 14692–14700. 98 HARRIS AND TURNER 77. Muth, G. W., Chen, L., Kosek, A. B., and Strobel, S. A. (2001) pH-dependent conformational fl xibility within the ribosomal peptidyl transferase center. RNA 7, 1403–1415. 78. Thompson, J., Kim, D. F., O’Conner, M., Lieberman, K. R., Bayfield M. A., Gregory, S. T., Green, R., Noller, H. F., and Dahlberg, A. E. (2001) Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50 S ribosomal subunit. Proc. Natl. Acad. Sci. USA 98, 9002–9007. 79. Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001) Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501. 80. Xiong, L., Polacek, N., Sander, P., Bottger, E. C., and Mankin, A. (2001) pK a of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. RNA 7, 1365–1369. 81. Shih, I.-H., and Been, M. D. (2001) Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Proc. Natl. Acad. Sci. USA 98, 1489–1494. 72. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. ° (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J. Mol. Biol. 291, 899–911. 73. Subramaniam, S., Gerstein, M., Oesterhelt, D., and Henderson, R. (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–8. 74. Ludlam, C. F., Sonar, S., Lee, C. P., Coleman, M., Herzfeld, J., Raj Bhandary, U. L., and Rothschild, K. J. (1995) Site-directed isotope labeling and ATRFTIR difference spectroscopy of bacteriorhodopsin: the peptide carbonyl group of tyr-185 is structurally active during the bR→N transition. Biochemistry 34, 2–6. 75. Martinez, L., Thurmond, R., Jones, P., and Turner, G. J. (2002) Subdomains in the F and G helices of bacteriorhodopsin regulate the conformational transitions of the reprotonation mechanism. Proteins (in press). 76. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.