Until the time of Isaac Newton (1642–1727), most scientists thought that light consisted of streams of particles (called corpuscles) emitted by light sources. Galileo and others tried (unsuccessfully) to measure the speed of light. Around 1665, evidence of wave properties of light began to be discovered. By the early 19th century, evidence that light is a wave had grown very persuasive. In 1873, James Clerk Maxwell predicted the existence of electromagnetic waves and calculated their speed of propagation. This development, along with the experimental work of Heinrich Hertz starting in 1887, showed conclusively that light is indeed an electromagnetic wave.
The wave picture of light is not the whole story, however. Several effects associated with emission and absorption of light reveal a particle aspect, in that the energy carried by light waves is packaged in discrete bundles called photons or quanta. These apparently contradictory wave and particle properties have been reconciled since 1930 with the development of quantum electrodynamics, a comprehensive theory that includes both wave and particle properties. The propagation of light is best described by a wave model, but understanding emission and absorption requires a particle approach. The fundamental sources of all electromagnetic radiation are electric charges in accelerated motion. All bodies emit electromagnetic radiation as a result of thermal motion of their molecules; this radiation, called thermal radiation, is a mixture of different wavelengths. At sufficiently high temperatures, all matter emits enough visible light to be self-luminous; a very hot body appears “red-hot” or “white-hot.” Thus hot matter in any form is a light source. Familiar examples are a candle flame, hot coals in a campfire, the coils in an electric room heater, and an incandescent lamp filament.
Light is also produced during electrical discharges through ionized gases. The bluish light of mercury-arc