Ever talk to someone at a party or conference reception only to discover that he or she is constantly scanning the room, looking this way and that, perhaps finding you boring, perhaps looking for someone more important? Doesn’t the person realize that you notice?
Welcome to the new world of wearable computers, where we will tread uneasily as we risk continual distraction, continual diversion of attention, and continual blank stares in hopes of achieving focused attention, continual enhancement, and better interaction, understanding, and retention. Google’s latest hardware toy, Glass, which has received a lot of attention, is only the beginning of this challenge.
Actually, it isn’t the beginning—this stuff has been around for over a decade. In my former roles as a cognitive scientist and vice president of technology at Apple, and now as a management consultant in product design, I visit research laboratories at companies and universities all over the world. I’ve experienced many of these devices. I’ve worn virtual-reality goggles that had me wandering through complex computerized mazes, rooms, and city streets, as well as augmented realities where the real world was overlaid with information.
And yes, I’ve worn Google Glass. Unlike “immersive” displays that capture your full attention, Glass is deliberately designed to be inconspicuous and nondistracting. The display is only in the upper right of the visual field, the goal being to avoid diverting the user’s attention and to provide relevant supplementary information only when needed.
Even so, the risk of distracting the user is significant. And once Google allows third-party developers to provide applications, it loses control over the ways in which these will be used. Sebastian Thrun, who was in charge of Google’s experimental projects when Glass was conceived, told me that while he was on the project, he insisted that Glass provide only limited e-mail