Preview

A Spectrophotometric Analysis of the Absorption of Green Light Versus Red Light Absorption in Spinach Leaves

Better Essays
Open Document
Open Document
1512 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
A Spectrophotometric Analysis of the Absorption of Green Light Versus Red Light Absorption in Spinach Leaves
A Spectrophotometric Analysis of the Absorption of Green Light Versus Red Light Absorption in Spinach Leaves

The goal of the experiment was to determine if green light had less ability to absorb than red light in spinach leaves. This was done by separating the photosynthetic pigments (chlorophyll a, chlorophyll b, carotene and xanthophylls) from one another using paper chromatography. The separated pigments were then analyzed for their absorption spectrum using a spectrographometer. When the data was graphed it clearly showed the higher rate of red light absorption over green light. These results along with previous research indicate the importance of red light in photosynthesis and the minor role green light plays.

The majority of life on Earth depends on photosynthesis for food and oxygen. Photosynthesis is the conversion of carbon dioxide and water into carbohydrates and oxygen using the sun 's light energy (Campbell, 1996). This process consists of two parts the light reactions and the Calvin cycle (Campbell, 1996). During the light reactions is when the sun 's energy is converted into ATP and NADPH, which is chemical energy (Campbell, 1996). This process occurs in the chloroplasts of plants cell. Within the chloroplasts are multiple photosynthetic pigments that absorb light from the sun (Campbell, 1996). Photosynthetic pigments work by absorbing different wavelengths of light and reflecting others. These pigments are divided into two categories primary (chlorophyll) and accessory (carotenoids) pigments. Chlorophyll is then divided into three forms a, b, and c (Campbell, 1996). Chlorophyll a is the primary pigment used during photosynthesis (Campbell, 1996). This pigment is the only one that can directly participate in light reactions (Campbell, 1996). Chlorophyll a absorbs the wavelengths of 600 to 700nm (red and orange) along with 400 to 500nm (blue and violet) and reflects green wavelengths (Lewis, 2004). Chlorophyll b has only a



References: Campbell, N.A., "Biology," New York: The Benjamin/Cummings Publishing Company, Inc., 1996, 182-200. Karohl, D., "Principals of Biology I Laboratory," Lorain, Lorain County Community College, 2003, 65-71. Lewis, R., "Life," Boston: McGraw-Hill , 2004, 97-114. Nishio, J.N., "Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement," Plant, Cell and Environment, 2000, 23, 539-5

You May Also Find These Documents Helpful

  • Satisfactory Essays

    The carotenoids, which are the pigments that reflect in the yellow to red spectra and absorb blue light. There are some, functioning as secondary pigments involved in photosynthesis, that is unmasked once the chlorophyll content diminishes.…

    • 323 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Spinach Lab Report

    • 1619 Words
    • 7 Pages

    More specifically, however, this experiment focused on the photo part of photosynthesis, or the light dependent reactions in chloroplasts. Light dependent reactions require the presence of light to function, so that this light can be taken to create ATP and to reduce NADP+ to NADPH. Consequently, light dependent reactions shut down in the absence of light, thereby stopping the production of ATP and NADPH (Sadava et al. 2012). With this information, an experimental hypothesis can be formed that the presence of light will cause the redox activity of the spinach chloroplasts to increase, while the absence of light will cause this activity to decrease. One possible null hypothesis could be that there will be no significant difference in redox activity between spinach chloroplasts that are under light and in the dark. Therefore, the alternative hypothesis must be that there will be a difference in this activity between the two groups of chloroplasts. To test these hypotheses, chloroplasts were extracted from spinach leaves in order to create enriched chloroplasts, which were a vital…

    • 1619 Words
    • 7 Pages
    Good Essays
  • Good Essays

    The purpose of this experiment is to see how different concentrations of carbon dioxide affect the rate of photosynthesis in spinach leaves.…

    • 722 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Lab 5

    • 757 Words
    • 3 Pages

    3. Chlorophyll b absorbs mainly blue and orange light. It broadens the range of light that a plant can use by conveying absorbed energy into chlorophyll a which then puts the energy to work in light spectrums.…

    • 757 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Abstract: The purpose of this lab is to separate and identify pigments and other molecules within plant cells by a process called chromatography. We will also be measuring the rate of photosynthesis in isolated chloroplasts. Beta carotene, the most abundant carotene in plants, is carried along near the solvent front because it is very soluble in the solvent being used and because it forms no hydrogen bonds with cellulose. Xanthophyll is found further from the solvent font because it is less soluble in the solvent and has been slowed down by hydrogen bonding to the cellulose. Chlorophylls contain oxygen and nitrogen and are bound more tightly to the paper than the other pigments. Chlorophyll a is the primary photosynthetic pigment in plants. A molecule of chlorophyll a is located at the reaction center of the photo systems. The pigments collect light energy and send it to the reaction center. Carotenoids also protect the photosynthetic systems from damaging effects of ultraviolet light.…

    • 1351 Words
    • 6 Pages
    Good Essays
  • Good Essays

    Hypothesis: My hypothesis for this experiment, the study of the effects of different wavelengths on leaf pigments, if chlorophyll a absorbs blue-violet light, chlorophyll b absorbs blue light, carotene absorbs blue-green light, and xanthophyll absorbs blue light, then wavelengths of greatest absorption will be 400, 450, 500, and 450 respectively.…

    • 420 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Objective: The purpose of the experiment is to extract pigments from spinach leaves and separate them by column and thin layer chromatography, determining Rf values for the pigments.…

    • 1013 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Bio Spectroscopy Lab

    • 1273 Words
    • 6 Pages

    The purpose of this lab is to identify the concentration of unknown 276 using absorption values obtained from the spectrophotometer. When using these absorbance values in relation to similar fast green dilution solutions, the concentration of unknown 276 was achieved by drawing a line of best fit on a scatter plot (refer to figure 2 within this lab). By using absorption values of other solutions such as fast green stock solution and chloroplast pigments, information about high absorbency wavelengths was gained. By plotting this information in an “absorption spectrum” graph, the maximum absorption was easily identified for fast green, chlorophyll A and chlorophyll B (refer to figures 1 and 4 within this lab). The graphs in general can be closely related and compared to Beer’s Law stated above. For example, when referring to figure 2 (within this lab) concentration curve for fast green, absorption is in relation to concentration, where as when the concentration of a substance is increased, higher values of light was absorbed (Jones et al., 2007).…

    • 1273 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Photosynthesis lab

    • 625 Words
    • 3 Pages

    The objective of this study was to figure out how different light colors affected the rate of photosynthesis in spinach leaves. This was done by taking leaf disks, removing the CO2 and sinking them in beakers. One beaker filled with regular water, the other filled with a mixture of water and sodium bicarbonate. The beakers were then placed in front of the light sources and the amount of disks floating was recorded every minute. In our study the disks exposed to the red light started to float sooner than the…

    • 625 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Photosynthesis Lab

    • 1875 Words
    • 8 Pages

    Plants have a variety of pigments, all of which absorb a different color of light. The three…

    • 1875 Words
    • 8 Pages
    Better Essays
  • Good Essays

    Chlorophyll is a green pigment found in almost all plants, algae, and cyanobacteria that are critical for in photosynthesis.(tb) Chlorophyll molecules (C55H70MgN4O6) are attached to the membranes inside the cells called chloroplasts(LH). Plants need to constantly synthesize chlorophyll which requires warm temperatures and sunlight.…

    • 948 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Chromatography paper can be used to separate mixed chemicals, including mixed chloroplast pigments prepared from extract from fresh green grass or spinach. The mixture of pigments was prepared from organic greens, which were cleaned, cut into small pieces and bathed in acetone overnight (S. W. Jeffrey). The different pigments, chlorophyll a, chlorophyll b, and beta carotene have different polarities, due to which the separation of these pigments is possible with chromatography paper.…

    • 1323 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Photosynthesis Lab Report

    • 718 Words
    • 3 Pages

    Very little absorption occurs in the "green" region of the spectrum in both graphs 1 and 2. Graph 2 shows two peaks, one in the violet region (chlorophyll a) and one in the yellow-orange region at around the wavelength 670 nm. Due to the limitations of the colorimeter and its incapability of recording light absorbed by chlorophyll in between wavelengths of 600-700 nm, we did not have a recording for this region and thus no peak is shown. Also, in graph 1 , there is more absoption of yellow light while in graph 2 there I almost none, this can be due to the possibly of chlorophyll used from different plants. The least absorption (graph 1) is in the ‘blue-green' region, proving the leaves we used were dark green…

    • 718 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The photosynthesis process involves sunlight, sugar, and chlorophyll. Chlorophyll is called a photoreceptor. It is found in the chloroplasts of a plant cell that is within green plants, and is what gives green plants their green color. Chlorophyll has a special role in photosynthesis. Chlorophyll molecules absorb light energy. Chlorophyll is a complex molecule, which has lead to a number of variations of chlorophyll that take place among plants and other photosynthetic organisms.…

    • 493 Words
    • 2 Pages
    Good Essays
  • Better Essays

    I predict that the plant under blue and purple light will have a higher photosynthetic rate because according to the colour spectrum, they are of shorter wavelength thus they have a higher energy. The red light and green light will have lower…

    • 1994 Words
    • 8 Pages
    Better Essays