Transgenic science was born in 1970 when experiments were conducted to produce different strains of mice; cells originating from one strain were introduced to the embryos of another strain by aggregation or injection during the blastocyst stage (C. River). The resulting offspring showed characteristics from each strain used. These first transgenic animals were created without the use of recombinant DNA, but the process was a building block for the mechanisms of genetic engineering used today (C. River). This process is actually quite similar to that of cloning, when one organism is a genetically identical to its parent. Today, three methods are used to transfer genes: DNA microinjection, retrovirus-mediated gene transfer, and embryonic stem cell-mediated gene transfer (Harper). DNA microinjection, the most common method used, involves the
Transgenic science was born in 1970 when experiments were conducted to produce different strains of mice; cells originating from one strain were introduced to the embryos of another strain by aggregation or injection during the blastocyst stage (C. River). The resulting offspring showed characteristics from each strain used. These first transgenic animals were created without the use of recombinant DNA, but the process was a building block for the mechanisms of genetic engineering used today (C. River). This process is actually quite similar to that of cloning, when one organism is a genetically identical to its parent. Today, three methods are used to transfer genes: DNA microinjection, retrovirus-mediated gene transfer, and embryonic stem cell-mediated gene transfer (Harper). DNA microinjection, the most common method used, involves the