Classification of Polymers – Notes prepared by
The most common way of classifying polymers is to separate them into three groups - thermoplastics, thermosets, and elastomers5. The thermoplastics can be divided into two types - those that are crystalline and those that are amorphous. You may click on the words in the diagram below to learn more about these classifications.
Thermoplastics
Molecules in a thermoplastic are held together by relatively weak intermolecular forces so that the material softens when exposed to heat and then returns to its original condition when cooled. Thermoplastic polymers can be repeatedly softened by heating and then solidified by cooling - a process similar to the repeated melting and cooling of metals. Most linear and slightly branched polymers are thermoplastic. All the major thermoplastics are produced by chain polymerization.
Thermoplastics have a wide range of applications because they can be formed and reformed in so many shapes. Some examples are food packaging, insulation, automobile bumpers, and credit cards.
Thermosets
A thermosetting plastic, or thermoset, solidifies or "sets" irreversibly when heated. Thermosets cannot be reshaped by heating. Thermosets usually are three-dimensional networked polymers in which there is a high degree of cross-linking between polymer chains. The cross-linking restricts the motion of the chains and leads to a rigid material.
A simulated skeletal structure of a network polymer with a high cross-link density is shown at the right.
Thermosets are strong and durable. They primarily are used in automobiles and construction. They also are used to make toys, varnishes, boat hulls, and glues
Elastomers
Elastomers are rubbery polymers that can be stretched easily to several times their unstretched length and which rapidly return to their original dimensions when the applied stress is released.
Elastomers are cross-linked, but have a low