An Oxidation-Reduction Scheme Nicolas Gibson Lab Time: Tuesday 11:30 am Abstract: In this experiment‚ the main objective was to synthesize a ketone from borneol via an oxidation reaction and secondly‚ to produce a secondary alcohol from camphor via a reduction reaction. Therefore‚ the hypothesis of this lab is that camphor will be produced in the oxidation reaction and isoborneol will be the product of the reduction reaction because of steric hindrance. For the oxidation step
Premium Alcohol
College Chemistry 1 Lab 16 Oxidation Reduction Lab 16 Introduction: I will learn about redox reactions. Materials and Methods: I placed ten drops of each substance into different wells. Then I took Magnesium and put it in the first one. I put Zinc into the second one. I placed lead into the third and fourth one‚ and put iron into the fifth one. Results: See Table Below. Discussion: I learned about different redox reactions. Questions: A. Sodium
Premium Chemical reaction
Title of Experiment: An Activity Series Lab MSDS: Copper‚ Cu(s) Stability- Stable. Incompatible with strong acids‚ active halogen compounds‚ chlorine‚ fluorine‚ iodine‚ bromine‚ ammonia. May react explosively with strong oxidizing agents. Toxicology-Dust may cause respiratory irritation. Personal Protection- Suitable ventilation if handling powder. Zinc‚ Zn(s) Stability-Stable. Incompatible with amines‚ cadmium‚ sulfur‚ chlorinated solvents‚ strong acids‚ strong bases. Air and moisture
Premium Chlorine Bromine Oxidizing agent
9.1.1 Define oxidation and reduction in terms of electron loss and gain. Oxidation: the loss of electrons Reduction: the gain of electrons 9.1.2 Deduce the oxidation number of an element in a compound. Always determine elements that never change their oxidation number then ensure the charge of whole molecule is right. N.B. Atoms in elemental state have oxidation numbers of 0 9.1.3 State the names of compounds using oxidation numbers. Example of this in iron‚ can be iron(II) or iron(III) 9.1.4 Deduce
Premium Electrochemistry
Period 1 11/7/13 Chapter 35 Discussion Background: Potassium permanaganate is widely used as an oxidizing agent in volumetric analysis. In acid solution‚ MnO4- ion undergoes reduction to Mn2+ this is the equation: 8H+(aq) + Mno4-(aq) + 5e- Mn2+(aq) + 4H2O Since the KMnO4 – ion is violet and the Mn2+ ion is nearly colorless‚ the end point titrations using KMnO4 as the titrant can be taken as the first pink color that appears in the solution (and stays without disappearing).
Premium Potassium permanganate Oxidizing agent Manganese
Oxidation of Cyclododecanol Bo Schuetz Chem 34l Section 004 10/29/2024. Introduction Goal: The objective of this experiment was to convert cyclododecanol‚ a secondary alcohol‚ into cyclododecanone‚ a ketone‚ through an oxidation reaction using sodium hypochlorite (NaClO) as the oxidizing agent. Oxidation reactions of alcohols are fundamental in organic synthesis‚ as they enable chemists to selectively introduce new functional groups‚ which can subsequently be used to build more complex molecules
Premium
“Kinetics of Ethanol Oxidation” laboratory experiment utilized Beer’s law and spectroscopy to monitor concentration and the rate of ethanol oxidation through the LoggerPro System. This data then helped determine the kinetic rate constant‚ k‚ and the order of the reaction. First‚ the wavelength of maximum absorbance was determined using the LoggerPro interface and a Vernier colorimeter. Beer’s law was then used to determine the molar absorptivity. Finally‚ a kinetic study of ethanol oxidation was completed
Premium Ethanol Chemical reaction Alcohol
ACTIVITY SERIES The activity series of metals is an list of metals ranked in order of decreasing reactivity to displace hydrogen gas from water and acid solutions. It can also be used to predict which metals will displace other metals in aqueous solutions. In introductory chemistry‚ the reactivity series or activity series is an empirical series of metals‚ in order of "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water‚ single
Free Hydrogen Oxygen Chlorine
Bleach Oxidation of 9-Hydroxyfluorene The purpose of this experiment was to oxidize an alcohol (9-hydroxyfluorene) to a ketone (9-fluorenone) using aqueous sodium hypochlorite (bleach) as the oxidizing agent‚ while introducing techniques used in microscale experiments. Reaction: Results 1. Recrystallized Product Yield Product yield = (actual yield/theoretical yield) x 100% 3mL 9-hydroxyfluorene x (1mL/1000mL) x (0.09 mol/L) = 2.7 x 10-4 moles 0.05g 9-fluorenone / (180.20g/mol) = 2.77 x 10-4
Premium Infrared Oxidizing agent Thin layer chromatography
INTRODUCTION For this experiment we studied an oxidation-reduction reaction of magnesium and hydrochloric acid solution. We compared the experimental measured amount of a product and the amount predicted by the theoretical calculation of a balanced equation: Mg (s) + 2HCl (aq) → MgCl2 (aq) + H2 (g) PROCEDURE First we obtained a strip of pre-cut magnesium ribbon‚ cleaned it with steel wool to remove any signs of oxidation from the strip (which would alter our results)‚ and then weighed it (individual
Premium Chlorine Hydrochloric acid Hydrogen