This experiment was a Landolt Iodine clock reaction - Oxidation of Bisulphite by Iodate. It involved conducting three measured experiments. The first variable tested was concencentration. This was tested by conducting two experiments‚ each varying the concentration of either the NaHSO3 or KIO3. The varying of NaHSO3 involved using 0.1 Molar of KIO3 against decreasing concentrations of NaHSO3 (0.25 M‚ 0.125 M‚ 0.0625 M and 0.03125 M). When decreasing the concentration of KIO3‚ 0.25 M of NaHSO3 was
Premium Chemistry Chemical reaction Oxygen
Demonstration of the Rates of Reaction Between Sulphuric Acid (25mL ±0.5mL) and Magnesium (0.02g ±0.01g) Changing Due to Different Surface Areas By Chania Baldwin Introduction: When sulphuric acid and magnesium are added together‚ magnesium sulphate and hydrogen gas is created. To create such a reaction the atoms must collide with a sufficient amount of energy. Every reaction requires a different amount of energy to create the reaction‚ which is called the activation energy; when there is not enough
Premium Chemical reaction Chemical kinetics Surface area
environments affecting the rate of reaction‚ PNPP (p-nitrophenyl phosphate) + H20 ? PNP (p-nitrophenol) + H3P04. This reaction is catalyzed by the enzyme phosphatase. Different environments produced different reaction rates as environmental factors affect the efficiency of phosphatase. This is because environmental factors can change the tertiary structure of phosphatase‚ which alters its active site‚ and thus changes its efficiency to catalyze the reaction. We measured the rate of reaction‚ by using a chromogenic
Premium Chemical reaction Enzyme Chemistry
Finding the rate law was the overall goal of the laboratory. When finding the wavelength of the Azo Orange II dye‚ the highest wave was the point used‚ 483nm. The plotted points of the different concentrations absorbance’s made sense to have a steady upward slope because the dye was diluted in steady increments from full to ¾ and so on. Beer’s law was used next to calculate the absorbance of they time over time as bleach was added. One the absorbance value was calculated‚ the concentrations were
Premium Chemistry Concentration Chemical reaction
Substance Hazard images Exposure Symptoms Prevention First aid Spillage/Disposal Storage PREVENT GENERATION OF MISTS! AVOID ALL CONTACT! IN ALL CASES CONSULT A DOCTOR! Hydrogen peroxide Hydrogen dioxide Dihydrogen dioxide H2O2 Molecular mass: 34.0 20% Vol and lower Corrosive to metals‚ category 1 Skin corrosion‚ categories 1A‚ 1B‚ 1C Serious eye damage‚ category 1 Oxidizing gases‚ category 1 Oxidizing liquids‚ categories 1‚2‚3 Inhalation Sore throat. Cough. Dizziness
Premium Oxygen Cardiopulmonary resuscitation First aid
Erin Bolton Chemistry Lab Report April 29‚ 2015 Lab: Reaction Rates Introduction: In this experiment we studied the reaction of potassium persulfate‚ K2S2O8‚ with potassium iodide‚ KI. All chemical reactions have an energy barrier to overcome before the reaction will proceed. We will record data based on the concentration‚ temperature and catalyst for each experiment. Once this has been completed it will be graphed. Procedure: Due to the chemicals being used having hazard gloves are used
Premium Chemistry Chemical reaction
temperature on the rate of the iodine clock reaction using ammonium persulfate Assessment criteria: Design Variables: Table 1.1: List of dependent and independent variables. S.No | Dependent variables | Independent variables | Controlled variables | 1. | Rate of reaction | Temperature | Concentration | 2. | - | - | Pressure | 3. | - | - | Volume | Hypothesis: The iodine clock reaction is an experiment that
Free Chemical reaction Chemical kinetics Iodine
Determination of a Rate Law Megan Gilleland 10.11.2012 Dr. Charles J. Horn Abstract: This two part experiment is designed to determine the rate law of the following reaction‚ 2I-(aq) + H2O2(aq) + 2H+I2(aq) + 2H2O(L)‚ and to then determine if a change in temperature has an effect on that rate of this reaction. It was found that the reaction rate=k[I-]^1[H2O2+]^1‚ and the experimental activation energy is 60.62 KJ/mol. Introduction The rate of a chemical reaction often depends
Premium Chemical reaction Reaction rate Temperature
Using the Iodine clock method to find the order of a reaction Introduction When peroxodisulfate (VI) ions and iodide ions react together in solution they form sulfate (VI) ions and iodide. This reaction is shown below: S2O82-aq+ 2I-aq SO42-aq+ I2(aq) The reactants and the sulfate (VI) ions are colourless however the Iodine is a yellow/brown colour. This allows you to measure the progress of the reaction through the colour change when the iodine is produced. In order to determine the order of
Premium Chemical reaction Chemistry Reaction rate
During the lab experiment six different test were conducted. Each test consists of chemicals to be tested using 3 to 10 drops of the additive in order to observe a change. With any experiment you compose a hypothesis; where you make an educated guess. The hypothesis will primarily be‚ which base chemical will produce the greatest change based on the additive. Experiment 6.1 (Starch) when adding the three drops of Iodine to each tube observe the color change. When performing this test the chemical
Premium Chemistry Hydrochloric acid Chemical reaction