Study Guide Chapter 4 - Chemical Quantities and Aqueous Reactions * Reactions Stoichiometry * mole-mole conversions * mass-mass conversions * Limiting Reactants * What is the Limiting Reagent * How do we find the L.R. * Solutions * Molarity - definition and how to calculate * Dilutions Calculations (M1V1 = M2V2‚ careful with M2) * Solution Stoichiometry * volume-volume conversions * volume-mass conversions * Molecular interpretation
Premium Chemistry Chemical reaction Chlorine
Stoichiometry I. Introduction/ Purpose: Stoichiometry is the study of the quantitative‚ or measurable‚ relationships that exist in chemical formulas and also chemical reactions. The calculations of a stoichiometry problem depend upon balanced chemical equations. The coefficients of the balanced equations indicate the molar ratio of the reactants and products taking part in the reaction. There are three major categories of stoichiometry problems such as mass-mass‚ mass-volume‚ and volume-volume
Premium Stoichiometry Chemical reaction
observe the reactions of specific aqueous solutions with specific aqueous reagents. Introduction: A solution is as a homogeneous mixture containing two or more substances. Reagents are added to solutions to create a chemical reaction or added to see if anything occurs. Reagents can be added to solutions to see if there is a presence of other substances. For example‚ iodine added to a lead solution. Iodine would be the reagent and would cause a chemical reaction confirming the presence of lead. We
Premium Chemistry Magnesium Nucleophile
Stoichiometry lab 1 Purpose: The purpose of this lab is to find the limiting reactant‚ also to find the percentage yield and percentage purity of the reaction that happens between Calcium Chloride and Sodium Carbonate. The other purpose was to know how the reaction can be balanced and created. Hypothesis: In this lab we are going to see a precipitation reaction. This is a reaction where two soluble salts Sodium Carbonate and Calcium Chloride are added together and the result is the precipitation
Premium Chemistry Chemical reaction Chlorine
LMounika Alluri Chemistry HL Block D 19/9/12 LAB REPORT #1 LIMITING REAGENTS INVESTIGATION Aim: To determine the limiting reagent and percent yield of the reaction between potassium iodide with lead (II) nitrate solution. Apparatus required: Safety glasses‚ funnel stands‚ watch glass‚ oven‚ electronic balance‚ wash bottle with distilled water‚ test tubes‚ 10.0mL 0.50M lead (II) nitrate‚ 10.0mL 0.30M of potassium iodide solution‚ two 100.0 mL beakers‚ funnel‚ filter paper. Reaction
Premium Stoichiometry Chemistry
Introduction: During this lab‚ we found the excess reactant and limiting reactant between Aluminum and Copper (ll) Chloride. Using stoichiometry‚ we were able to make predictions. Through the reaction 2Al + 2CuCl₂ → 3Cu + 2AlCl₃ we carried out this experiment and determined that the limiting reactant was CuCl₂ and that the aluminum was in excess. We also determined the percentage yield of copper. Purpose: The purpose of this experiment was to determine the limiting reactant and percentage yield
Premium Stoichiometry Aluminium Scientific method
| Reactions of Grignard Reagents with Carbonyls | | | Tuesday 1:30 | 2/28/2012 | | Introduction This experiment explores the reactivity pattern for the addition of Grignard reagents to three different carbonyl groups: a ketone‚ an ester‚ and a carbonate. Grignard reagents are organometallic compounds that have a carbon-metal bond‚ such as carbon-magnesium. Grignard reagents are formed from the reaction of an alkyl‚ cycloalkyl‚ or aryl halide and magnesium metal in dry ether
Premium Magnesium Oxygen Diethyl ether
principle of limiting reactants relates to this lab because the limiting reactant is the substance that is used up first in a chemical reaction. The amount of product was limited by that reagent. The excess reactants were considered to be the other reagents that were presented in excess of the quantity that was reacted with the limiting reagent. The theoretical yield was determined as the amount of product obtained when the limiting reagent was completely used. The limiting reagent was identified
Premium Chemical reaction Chemistry Reaction rate
Limiting Reagents and Percentage Yield Worksheet 1. Consider the reaction I2O5(g) + 5 CO(g) -------> 5 CO2(g) + I2(g) a) 80.0 grams of iodine(V) oxide‚ I2O5‚ reacts with 28.0 grams of carbon monoxide‚ CO. Determine the mass of iodine I2‚ which could be produced? 80 g I2O5 1 mol I2O5 1 mol I2 1 333.8 g I2O5 1 mol I2O5 28 g CO 1 mol CO 1 mol I2 253.8 g I2 1 28 g CO 5 mol CO 1 mol I2 b) If‚ in the above situation‚ only 0.160 moles‚ of iodine‚ I2 was produced
Premium Stoichiometry Oxygen Zinc
In the Stoichiometry Challenge Lab we compared the theoretical results of the reaction between sodium carbonate (Na2CO3) and sulfuric acid (H2SO4) with the actual data we found. I hypothesised that If the mole ratio between Na2SO4 and H2SO4 is 1:1 then when I react 0.5 grams of Na2SO4 (reactant with H2SO4) I should get 0.669 grams of Na2SO4. The actual reaction between .05 grams of Na2CO3 and 5 mL of of H2SO4 produced 0.79g of Na2SO4. When I were testing the reaction‚ I measured out the reactants
Premium Chemistry Sodium hydroxide Chemical reaction