Preview

Agarose Gel Electrophoresis

Better Essays
Open Document
Open Document
1143 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Agarose Gel Electrophoresis
AGAROSE GEL ELECTROPHORESIS

Gel electrophoresis is a widely used technique for the analysis of nucleic acids and proteins. Most every molecular biology research laboratory routinely uses agarose gel electrophoresis for the preparation and analysis of DNA. We will be using agarose gel electrophoresis to determine the presence and size of PCR products.

Background:
Electrophoresis is a method of separating substances based on the rate of movement while under the influence of an electric field. Agarose is a polysaccharide purified from seaweed. An agarose gel is created by suspending dry agarose in a buffer solution, boiling until the solution becomes clear, and then pouring it into a casting tray and allowing it to cool. The result is a flexible gelatin-like slab. During electrophoresis, the gel is submersed in a chamber containing a buffer solution and a positive and negative electrode. The DNA to be analyzed is forced through the pores of the gel by the electrical current. Under an electrical field, DNA will move to the positive electrode (red) and away from the negative electrode (black). Several factors influence how fast the DNA moves, including; the strength of the electrical field, the concentration of agarose in the gel and most importantly, the size of the DNA molecules. Smaller DNA molecules move through the agarose faster than larger molecules. DNA itself is not visible within an agarose gel. The DNA will be visualized by the use of a dye that binds to DNA.

Purpose: To determine the presence or absence of PCR products and quantify the size (length of the DNA molecule) of the product.

Materials needed: Agarose TAE Buffer 6X Sample Loading Buffer DNA ladder standard Electrophoresis chamber Power supply Gel casting tray and combs DNA stain Staining tray Gloves Pipette and tips

Recipes: TAE Buffer 4.84 g Tris Base 1.14 ml Glacial Acetic Acid 2 ml 0.5M EDTA (pH 8.0) - bring

You May Also Find These Documents Helpful

  • Better Essays

    Nt1310 Unit 1 Exercise 1

    • 1475 Words
    • 6 Pages

    Denaturation is carried on by heating the double-stranded DNA at 94°C to separate the complementary strands that will serve as template in further cyclings. Pre-denaturation is sometimes done at the same temperature to ensure complete separation of strands. Annealing then occurs upon rapid cooling of the solution, allowing oligonucleotide primers to hybridize to the template. In this phase, however, the single strands of the template are too long and complex to be able to completely reanneal spontaneously. The gene fragment to be amplified will completely form double-stranded fragments upon further cycling of this step and the extension step. The extension step involves heating of the reannealed DNA to 72°C, the temperature at which the thermostable DNA polymerase in the mix will operate most efficiently in synthesizing new DNA strands.…

    • 1475 Words
    • 6 Pages
    Better Essays
  • Good Essays

    The concentration of the agarose mixed with the electrophoresis buffer determines the pore sizes and limits what molecules can pass. The lower the concentration of agarose goes it also increases pore sizes allowing previously unable large molecules to migrate down the gel and a faster migration rate for molecules that were already able to pass through. The opposite is also true the higher the percent agarose it the smaller the pore sizes, slowing down or reducing migration distance. The conformation or shape of the DNA fragment also plays a role in its migration distance. The less space DNA takes up means it will be less likely to get caught or slow down while going through the gel. When comparing nucleic acids of similar bp compact or supercoiled DNA travels the fastest and linear DNA travels at a faster rate than nicked open circular DNA would…

    • 574 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Apush Unit 5 Review

    • 1238 Words
    • 5 Pages

    The purpose of this lab was to observe the different amount of distances each DNA samples travel when placed in a gel-electrophoresis box. Restriction endonucleases are critical tools in recombinant DNA methodology. Electrophoresis is the method of determining the size of fragments that are cut by restriction enzymes. These restriction enzymes always cut at their specific protein recognition sites. This is very useful in the sense that no two restriction enzymes codes for exactly the same recognition site, giving it a unique characteristic that is specific for a strand of DNA. Gel electrophoresis is a technique used to separate different sized fragments of DNA or RNA with the use of an electric field. When a molecule enters an electric field, the speed at which the molecule moves is influenced by several factors including: the charge of the molecule, the strength of the electrical field, the size and shape of the molecule, and the density of the medium (in this case the agarose gel) through which the molecule moves. Because of this, scientists are able to separate different groups of DNA or RNA molecules by first positioning all the molecules at a uniform starting point on the agarose gel and then placing the gel in a chamber containing buffer solution and electrodes. A buffer is a solution that adds extra ions to the gel enhancing the conductivity in the agarose gel matrix. Once in the chamber containing buffer solution and electrodes, the molecules of DNA will begin to migrate through the gel and form bands due to the negative charge of the phosphate groups in the backbone of DNA moving towards the positive electrode.…

    • 1238 Words
    • 5 Pages
    Better Essays
  • Better Essays

    To do this, the steps found on page 105 of the Microbiology Lab Manual were conducted without and modifications to the steps. To do this, the remaining 20 microliters was added to a tube containing 100 microliters of CP buffer. Then, the whole sample of both the PCR and CP buffer are added to a blue tube positioned in a white tube. This tube was then centrifuged for one minute forcing and liquid into the white tube and keeping the DNA in the blue tube. Once the centrifuge is done, discard any liquid in the white tube into a waste beaker. Next, 700 microliters of wash duffer was added to the blue column and was then centrifuged for one minute to remove any excess liquid. The wash buffer contained ethanol which DNA is not soluble in meaning it won’t be washed out and will remain in the blue column. Once the centrifuge is finished, the excess liquid was disposed of in the waste beaker. Next, 500 microliters of wash buffer was added to the blue tube which was then centrifuged for one minute to remove the excess liquid which was then discarded in the waste beaker. After applying the wash buffer for the second time, the blue tube was then centrifuged for two minutes to make sure all of the ethanol is out so the DNA isn’t inhibited. The blue column was then transferred to a clean, sterile tube and 50 microliters of elution buffer was added. It’s…

    • 1516 Words
    • 7 Pages
    Better Essays
  • Good Essays

    Through the process of gel electrophoresis, DNA fragments are able to be separated. Gel electrophoresis is a method of separating and analysis DNA molecule fragments based on their size and charge. On end of the gel is given a positively charged end and one end is negatively charged. When an electric current is passed through the gel charged molecules move through it. Larger molecules move slower, moving a shorter distance, while smaller molecules move faster and traveler further. These DNA molecules are separated by size in the gel and dye is used to stain the fragments and make them more visible.…

    • 231 Words
    • 1 Page
    Good Essays
  • Good Essays

    is now clumped and visible .The tube is placed into the centrifuge .Lastly , the liquid is removed from the DNA and is dried. DNA extraction is…

    • 509 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Lab Report Part II

    • 1247 Words
    • 4 Pages

    Background Information: The process begins with preparing a sample. Successful identification starts with using a sample that is considered to be good. The first step is to pick up a single colony and drop it into a microcentrifuge tube. A buffer is used to dissolve the cell wall in order to extract bacterial DNA. This step may take several hours. The proteolytic enzymes need to go before proceeding. Heating the sample in a water bath at 100 degrees Celsius denatures them. Next, cellular debris is spun down in the centrifuge and appears as a pellet at the bottom. The DNA is contained in the liquid, which is then transferred to the tube. To continue the process, PCR amplification is conducted. One must add PCR Master Mix solution to the sample DNA to prepare the polymerase chain reaction. The mix contains water, a buffer to keep the correct pH for the reaction; large quantities of the four nucleotides; large quantities of oligonucleotide DNA primers; and a heat-stable DNA polymerase. At the same time, one will prepare negative and positive control reactions. The positive contains positive control DNA while the negative contains sterile deionized water. Both contain the PCR solution. Once reaction tubes have been loaded onto the PCR machine, DNA replication starts. By doing this, one can know temperature, time remaining, cycle number, melt, anneal, and extend. The first step, melt, is to separate the two DNA chains in the double helix by heating the vial containing the PCR reaction mixture to 95 degrees Celsius for 30 seconds. The vial is cooled at 60 degrees Celsius. The final step, extend, is to allow the DNA polymerase to extend the copy DNA strand by raising the temperature to 70 degrees Celsius for 45 seconds. Separation of the strands, annealing the primer to the template, and the synthesis of new strands…

    • 1247 Words
    • 4 Pages
    Better Essays
  • Good Essays

    A sample of DNA found in a crime scene was provided along with five suspects. Their DNA was then processed using restriction enzymes and Agarose Gel Electrophoresis. The objective of this lab was to match a criminals DNA to a crime scene using restriction enzymes EcoRI and Pstl with Agarose gel electrophoresis. Restriction enzymes cut DNA at a specific base pair site recognized by the enzyme, which then turns one single strand of DNA into many fragmented strands of DNA. EcoRI recognizes and cuts the palindromic base pair sequence GATTC while Pstl recognizes and cuts the palindromic base pair sequence CTGCAG. Agarose gel electrophoreses separates these fragmented DNA by their size. The negatively charged DNA moves through the Agarose gel to the positively charged end of the gel. The smaller fragments move through the gel more quickly allowing a linear view of the fragmented DNA when the process is complete. Since each individuals DNA will be cut into different size fragments when restriction enzymes are applied we can match one of the suspects to the crime scene DNA sample. This process enables an individual’s DNA to be matched, much like a fingerprint, to a sample of unknown DNA.…

    • 866 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    First Lab 1 How Is It

    • 313 Words
    • 1 Page

    DNA electrophoresis is a method used to sort DNA molecules by length. Pieces of DNA are in a tray of gel and subjected to an electric field, this causes them to migrate toward one side of the tray.…

    • 313 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    9. When placing the gel in the electrophoresis chamber, the DNA wells must be closest to which end of the chamber? (Underline the correct answer.)…

    • 253 Words
    • 1 Page
    Good Essays
  • Better Essays

    DNA Fingerprinting

    • 1281 Words
    • 5 Pages

    The electrophoresis apparatus creates an electrical field with positive and negative poles at the ends of the gel. DNA molecules are negatively charged. To which electrode pole of the electrophoresis field would you expect DNA to migrate Explain. 7.…

    • 1281 Words
    • 5 Pages
    Better Essays
  • Good Essays

    Biology Lab

    • 949 Words
    • 4 Pages

    4. What does the “gel” act like during electrophoresis?- The gel acts like a filter that sorts the DNA…

    • 949 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    The aim of the experiment is to isolate purified genomic DNA from cheek cells, prepare the sample for PCR reaction, place prepared sample in agarose gel through a procedure called…

    • 2156 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    Dna Barcoding

    • 981 Words
    • 4 Pages

    At this temperature the double strands of DNA are pulled apart into two single strands.…

    • 981 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Whatever you call it, this process relies on the ssDNA hybridizing (annealing) to the DNA on the membrane due to the binding of complementary strands. Probing is often done with 32P labeled ATP, biotin/streptavidin or a bioluminescent probe. A prehybridization step is required before hybridization to block non-specific sites, since you don't want your single-stranded probe binding just anywhere on the membrane.…

    • 783 Words
    • 4 Pages
    Good Essays