Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ (or, in older notation, TPN (triphosphopyridine nucleotide)), is a coenzyme used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent.NADPH is the reduced form of NADP+. NADP+ differs from NAD+ in the presence of an additional phosphate group on the 2' position of the ribose ring that carries the adenine moiety.In photosynthetic organisms, NADPH is produced by ferredoxin-NADP+ reductase in the last step of the electron chain of the light reactions of photosynthesis. It is used as reducing power for the biosynthetic reactions in the Calvin cycle to assimilate carbon dioxide.
Synthesis
The oxidative phase of the pentose phosphate pathway is a major source of NADPH in cells,[1] and in cells without mitochondria, it is the only source. However there are several other lesser-known mechanisms of generating NADPH, all of which depend on the presence of mitochondria. The key enzymes in these processes are: NADP-linked malic enzyme, NADP-linked isocitrate dehydrogenase, and nicotinamide nucleotide transhydrogenase.[2] The isocitrate dehydrogenase mechanism appears to be the major source of NADPH in fat and possibly also liver cells.[1] Also in mitochondria, NADH kinase produces NADPH and ADP using NADH and ATP as substrate.