JARA
ASTRONOMY 102 SEC 013
The ultimate question is; Is there a possibility that life might exist on a planet in the Beta Pictoris system? First, one must ask, Are there planets in the Beta Pictoris system?. However, that question would be impossible to answer if one did not answer the most basic questions first; Where do planets come from? and do the key elements and situations, needed to form planets, exist in the Beta Pictoris system?. To understand where planets come from, one has to first look at where the planets in our solar system came from. Does or did our star, the sun, have a circumstellar disk around it? the answer is believed to be yes. Scientists believe that a newly formed star is immediately surrounded by a relatively dense cloud of gas and dust. In 1965, A. Poveda stated, "That new stars are likely to be obscured by this envelope of gas and dust (1)." In 1967,
Davidson and Harwit agreed with Poveda and then termed this occurrence, the " cocoon nebula" (1). Other authors have referred to this occurrence as, a " placental nebula" (1), noting that it sustains the growth of planetary bodies. For a long time, even before there was the term cocoon nebula, planetary scientists knew that a cocoon nebula had surrounded the sun, long ago, in order for our solar system to form and take on their currents motions (1). In 1755, a German, named Immanuel Kant, reasoned that "gravity would make circumsolar cloud contract and that rotation would flatten it (1)." Thus, the cloud would assume the general shape of a rotating disk, explaining the fact that the planets, in our solar system, revolve in a disk-shaped distribution. This idea, about the disk-shaped nebula that was formed around the early sun, came to be known as the nebula hypothesis (1). Then, in 1796, a French mathematician named Laplace, proposed that the rotating disk continued to cool and contract, forming planetary
Bibliography: A Closer Look At Beta Pictoris; Astronomy; volume 21; Page 18. Birth Announcements; Scientific American; volume 256; pages 60+. Faraway Planets; Science Digest; volume 94; page 47. Protoplanetary nebula around Beta Pictoris; Astronomy; volume 13; page 60.