Introduction:
The Beta vulgaris craca plant, commonly referred to as the beet root contains a pigment, red in colour, called betacyanin. The betacyanin’s containment within the cells of the beet root cell relies on the stability of the plant’s membrane structure. The manipulation of the cell’s membranes through temperature change and solution treatments often causes damage to the vacuoles within the cell which contain betacyanin. Poovaiah and Leopold released a similar scientific publication in 1976 which analyzed the effects of inorganic salts on Tissue Permeability. This experiment undergone by Poovaiah and Leopold did not deal with temperature manipulation, however explored the various changes in the concentration of betacyanin which leaked from the cell vacuole and into the ambient solutions. The primary objective of this experiment is to explore the various stresses imposed on the cell membranes and to what extents are the cell membranes damaged. There is a relationship between the cell membrane stability and the amount of betacyanin released. Therefore, the more disruption caused to the membrane of the beet root cell, the more betacyanin released into the solution which surrounds the beet cells. The intensity of the pigment colour visible to the observer indicates the extent of which the membrane was damaged. In addition, a spectrophotometer is used to measure the amount of betacyanin absorbed by its surrounding water solution from the cell’s vacuole containing the pigment. In turn, the higher the temperature of the surrounding solution, the more damage is done to the cell membrane. Different solvents will also cause various damage to the cell membrane which will account for more or less betacyanin release. The membrane of a cell serves an extremely important