By Yue Sung (Lance) Fung
10/17/2012
Introduction
Today many new design aircraft concept use blended wing body theory, one of the biggest challenge of this aircraft is to design a strong and pressurized structure for safe commercial Airline transport. According to V. Mukhopadhyay the structure of Blended-Wing -Body (BWB) flight vehicle has been a one of the major challenging problem for many year. By comparing the fuselage of a conventional aircraft which is a cylinder shape, the stress level of a flatter shoebox shape type BWB fuselage has a higher magnitude ,because the internal pressure causes blending stress of the whole fuselage instead of the stress act on the skin membrane. Due to the primary design of the conventional fuselage structure are focus on membrane stress, a new design and material are needed ,in order to increase the bending moment of inertia without increase the weight requirement while the aircraft is pressurized . ( V. Mukhopadhyay). Although a whole flowing Blended Wing Body fuselage provide structure weaker and no as pressurize as conventional aircaft, but new designs of the blended wing body aircraft structure can provide satisfying stress, deflection and buckling safety factors, pressurized body during the critical flight and ground loads. There are three articles discussed in this literature review.According to R. H. Liebeck, the BWB structure is separated into two major components: the centerbody and the outer wings. The Y braced box type fuselage design structure concepts was based on a thick stringer outer surface structure, where the stringers are about 5–6 in. deep in order. Then using internal ribs have Y braces where they meet the skin, to reduce the bending moment on the skin created by the internal pressure across the center body and the outer wing. As a result ,the complete center body pressure vessel