Atrophy is a decrease in cell size. If enough cells in an organ atrophy the entire organ will decrease in size. Thymus atrophy during early human development (childhood) is an example of physiologic atrophy. Skeletal muscle atrophy is a common pathologic adaptation to skeletal muscle disuse (commonly called "disuse atrophy). Tissue and organs especially susceptible to atrophy include skeletal muscle, cardiac muscle, secondary sex organs, and the brain.
Hypertrophy is an increase in cell size. If enough cells of an organ hypertrophy so will the whole organ. The heart and kidneys have increased susceptibility to hypertrophy. Hypertrophy involves an increase in intracellular protein rather than cytosol (intracellular fluid). Hypertrophy may be caused by mechanical signals (e.g., stretch) or trophic signals (e.g., growth factors). An example of physiologic hypertrophy is in skeletal muscle with sustained weight bearing exercise. An example of pathologic hypertrophy is in cardiac muscle as a result of hypertension.
Hyperplasia is an increase in the number of cells. It is the result of increased cell mitosis, or division. The two types of physiologic hyperplasia are compensatory and hormonal. Compensatory hyperplasia permits tissue and organ regeneration. It is common in epithelial cells of the epidermis and intestine, liver hepatocytes, bone marrow cells, and fibroblasts. It occurs to a lesser extent in bone, cartilage, and smooth muscle cells. Hormonal hyperplasia occurs mainly in organs that depend on estrogen. For example, the estrogen-dependent uterine cells undergo hyperplasia and hypertrophy following pregnancy. Pathologic hyperplasia is an abnormal