Effects of Spin Contamination on the Stability and Spin Density of Wavefunction of Graphene: Comparison between First Principle and Density Functional Methods
(Kesan Pemumusan Spin Terhadap Kestabilan dan Ketumpatan Spin bagi Fungsi Gelombang
Grafen pelumusan: Perbandingan antara Kaedah Prinsip Pertama dan Kaedah Kefungsian Ketumpatan)
LEE SIN ANG*, SHUKRI SULAIMAN
& MOHAMED ISMAIL MOHAMED-IBRAHIM
ABSTRACT
The effects of spin contamination on the stability and the spin densities of a model of graphene in the Hartree-Fock wavefunction (HF), Møller-Plesset perturbation theory (second order, MP2 and fourth order, MP4) and density functional theory (B3LYP and PBEPBE) are reported. It was found that the Hartree-Fock and MP2 wavefunctions of graphene suffer from the contamination from higher spin states and spin projection method failed to project out the spin contaminants.
The spin density from HF was overestimated, while for MP2 it has the wrong trend. B3LYP and PBEPBE wavefunctions however have negligible contamination for higher spin states. Comparison with reported results showed that the spin densities at the center of the molecule from the pure functionals of PBEPBE were underestimated. Based on the comparison made, it was concluded that among the methods considered, the suitable one for use in the calculations of pristine graphene was B3LYP.
Keywords: Density functional theory; grapheme; Hartree-Fock; Møller-Plesset perturbation theory; spin contamination ABSTRAK
Kesan pelumusan spin ke atas kestabilan dan ketumpatan spin di dalam fungsi gelombang Hartree-Fock (HF), teori gangguan Møller-Plesset (tertib kedua, MP2 dan tertib keempat, MP4) dan teori fungsi ketumpatan (B3LYP dan PBEPBE) bagi model grafen dilaporkan. Didapati bahawa fungsi gelombang HF dan MP2 bagi grafen mengalami pelumusan daripada keadaan spin lebih tinggi dan kaedah projeksi gagal mengeluarkan pelumusan putaran. Nilai
References: Amos, T. & Snyder, L.C. 1964. Unrestricted Hartree-Fock Calculations Baker, J., Scheiner, A. & Andzelm, J. 1993. Spin contamination in density functional theory Burnham, D.R. 1969. Spin contamination in PPP unrestricted Hartree-Fock wave functions Chen, W. & Schlegel, H.B. 1994. Evaluation of S2 for correlated wave functions and spin projection of unrestricted MøllerPlesset perturbation theory Chuang, Y.-Y., Coitino, E.L. & Truhlar, D.G. 1999. How should we calculate transition state geometries for radical Claxton, T.A. & McWilliams, D. 1970. The restriction of spin contamination in unrestricted Hartree Fock wave functions. Cohen, A.J., Tozer, D.J. & Handy, N.C. 2007. Evaluation of in density functional theory Cramer, C.J., Dulles, F.J., Giesen, D.J. & Almlöf, J. 1995. Density functional theory: excited states and spin annihilation. Cremaschi, P., Gamba, A., Morosi, G. & Simonetta, M. 1976. Davidson, E.R. & Clark, A.E. 2005. Spin polarization and annihilation for radicals and diradicals Dias, J.R. 2008. Resonance-theoretic calculation of the ground state spin density of the π-system of edge atoms on graphene J. A. 2004. Gaussian03, Revision E.01, Wallingford CT, Gaussian, Inc. Geim, A.K. 2009. Graphene: Status and Prospects. Science 324: 1530-1534. Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Grafenstein, J., Kraka, E., Filatov, M. & Cremer, D. 2002. Can unrestricted density-functional theory describe open shell Handy, N. C., Knowles, P.J. & Somasundram, K. 1985. On the convergence of the Møller-Plesset perturbation series. Hod, O., Barone, V. & Scuseria, G.E. 2008. Half-metallic graphene nanodots: A comprehensive first-principles Jiang, D.-e., Sumpter, B.G. & Dai, S. 2007. First principles study of magnetism in nanographenes Kudin, K.N. 2008. Zigzag Graphene Nanoribbons with Saturated Edges Li, X. & Paldus, J. 2000. Effect of spin contamination on the prediction of barrier heights by coupled-cluster theory: Liu, B., Jia, D., Meng, Q. & Rao, J. 2007. A novel method for preparation of hollow carbon spheres under a gas pressure