axis: changes aspect ratio of x and y axis
x label: annoted the x axis
y label: annoted the y axis
title: puts the title on the plot title of prog: title('circle of unit radius')
print: prints the hardcopy of the plot
EX: draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq
is x=cos(t) y=sin(t) theta=linspace(0,2*pi,100);
axis='equal'; xlabel('x') ylabel('y')
1. plot y=sinx range 0 x=linspace(0,2*pi,100);
>> y=sin(x);
>> plot(x,y)
>> xlabel('x')
>> ylabel('y')
>> title('plot created by ashita')
2.plot y=e^(-0.4x)sinx range 0 x=linspace(0,4*pi,100); y=exp(-0.4.*x).*sin(x); >> plot(x,y)
>> x=linspace(0,4*pi,10); y=exp(-0.4.*x).*sin(x); >> plot(x,y)
>> x=linspace(0,4*pi,50); y=exp(-0.4.*x).*sin(x); >> plot(x,y)
3. use the cmd plot3(x,y,z) to plot the circular helix x(t)=sin(t) y(t)=cos(t) z(t) =t range:0 t=linspace(0,pi/9,10);
>> x=sin(t); y=cos(t); z=t;
>> plot3(x,y,z)
>>> the plot cmd semilogx(x,y) semilogy(x,y) and loglog(x,y)
4.plot the x values , y values and both x and y values on a log10 scale resp. create a vector
x=0:10:1000 plot x versus x^3 using the 3log10scale (semilogx,semilogy,loglog) plot cmd
soln:>> x=[0:10:1000];
>> y=x.^3;
>> semilogx(x,y)
>> x=[0:10:1000];
>> y=x.^3; semilogy(x,y) >> x=[0:10:1000]; y=x.^3; loglog(x,y)
5. plot y=cosx and z=1-(x^2)/2 + (x^4)/24 on 0 x=linspace(0,pi,100);
>> y=cos(x);
>> z=1-((x.^2)/2)+((x.^4)/24);
>> plot3(x,y,z)
6.circle draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq
is x=cos(t) y=sin(t) soln:>> theta=linspace(0,2*pi,100);
>> x=cos(t); y=sin(t); >> plot(x,y)
7. parabola x=at^2 y=2at t-varies(-4,4)
soln:t=linspace(-4,4);
>> a=1;
>> x=a.*t.*t;
>> y=2.*a.*t;
>> plot(x,y)
8. hyperbola
9. ellipse
An ellipse can be defined as the locus of all points that satisfy the equations
x