November 30, 2014 Part 1: Answer the following questions (20 points)
1. Name and describe the components needed to make a complete circuit. A complete circuit requires a battery, wires and a light bulb.
2. Compare and contrast a series and parallel circuit. Give at least one way that they are alike and one way that they are different. Both series and parallel circuits must have all the components of a complete circuit in order to work. These two circuits differ in the way the electrons are able to flow. In a series circuit the electrons flow in one direction and along one path only while in a parallel circuit the electrons may flow through different paths along any complete available circuit. In a parallel circuit more electrons will flow through the circuit as compared to the series circuit.
3. Ohm's law is represented by the equation I = V/R. Explain how the current would change if the amount of resistance decreased and the voltage stayed the same. Ohm’s law states current is dependent on voltage and resistance. As in any mathematical equation if we change one variable in the equation on one side and leave the other variable constant, the other side of the equation will change as well. In this case since current is equal to voltage divided by resistance. If we keep voltage the same and decrease the denominator (resistance) our resulting number will increase. Thus the current will increase. If we look at this from a physics stand point we can see that if we decrease the amount of resistance the electrons are faced with, then the electrons will feel the voltage more and thus they will flow at a faster rate.
4. Define resistance and describe what would happen to a light bulb if the voltage increased but the resistance stayed the same. Resistance is what slows the flow of electrons in a circuit. As described in the previous question, Ohm’s law states current=voltage/resistance. If we keep resistance the same and increase the force at which the