MAKING CLADOGRAMS: Background and Procedures Phylogeny, Evolution, and Comparative Anatomy A. Concept: Modern classification is based on evolution theory. B. Background: One way to discover how groups of organisms are related to each other (phylogeny) is to compare the anatomical structures (body organs and parts) of many different organisms. Corresponding organs and other body parts that are alike in basic structure and origin are said to be homologous structures (for example, the front legs of a horse, wings of a bird, flippers of a whale, and the arms of a person are all homologous to each other). When different organisms share a large number of homologous structures, it is considered strong evidence that they are related to each other. When organisms are related to each other, it means they must have had a common ancestor at some time in the past. If there are specific modifications of those features shared by different groups of organisms, we say that those features are “shared derived characters”. When we do studies in comparative anatomy, and find different numbers of shared derived characters exist between different groups, we can draw a diagram of branching lines which connect those groups, showing their different degrees of relationship. These diagrams look like trees and are called "phylogenetic trees" or "cladograms" (CLAY-doe-grams); see examples provided by your teacher. The organisms are at the tips of the stems. The shared derived features of the homologous structures are shown on the cladogram by solid square boxes along the branches, and common ancestors are shown by open circles. The more derived structures two organisms share, the closer is their evolutionary relationship -- that is, the more recently their common ancestor lived. On the cladogram, close relationships are shown by a recent fork from the supporting branch. The closer the fork in the branch
MAKING CLADOGRAMS: Background and Procedures Phylogeny, Evolution, and Comparative Anatomy A. Concept: Modern classification is based on evolution theory. B. Background: One way to discover how groups of organisms are related to each other (phylogeny) is to compare the anatomical structures (body organs and parts) of many different organisms. Corresponding organs and other body parts that are alike in basic structure and origin are said to be homologous structures (for example, the front legs of a horse, wings of a bird, flippers of a whale, and the arms of a person are all homologous to each other). When different organisms share a large number of homologous structures, it is considered strong evidence that they are related to each other. When organisms are related to each other, it means they must have had a common ancestor at some time in the past. If there are specific modifications of those features shared by different groups of organisms, we say that those features are “shared derived characters”. When we do studies in comparative anatomy, and find different numbers of shared derived characters exist between different groups, we can draw a diagram of branching lines which connect those groups, showing their different degrees of relationship. These diagrams look like trees and are called "phylogenetic trees" or "cladograms" (CLAY-doe-grams); see examples provided by your teacher. The organisms are at the tips of the stems. The shared derived features of the homologous structures are shown on the cladogram by solid square boxes along the branches, and common ancestors are shown by open circles. The more derived structures two organisms share, the closer is their evolutionary relationship -- that is, the more recently their common ancestor lived. On the cladogram, close relationships are shown by a recent fork from the supporting branch. The closer the fork in the branch