The first step is to calibrate the colorimeter with0.20 M Fe(NO3)3and set the absorbance at 470 nm since it is known to keep an acidic solution throughout the entirety of the experiment. It was important to do this right at the beginning of the lab since the zeroed value of the acid was the calibration number for all of the other solutions. A total of seven solutions with different dilutions were used throughout the lab to conduct the equilibrium constant. The first step was adding 5 mL of 0.200 M Fe(NO3)3to each of the 5 test tubes. Once this was done, 0.00200 M NCS was added to the test tubes, each receiving a different amount; test tube one received 1 mL NCS-and with each test tube the amount of NCS-would increase by 1 mL, test tube 5 received 5 mL of NCS. . The next step was adding HNO3 to each test tube in different volumes; Test tube one received 10 mL of HNO3 and with each test tube the amount of HNO3 decreased by 1 mL, test tube five had no HNO3 added to it. The addition of these solutions formed five test tubes of different dilutions, but of equal volume, 10 mL each. After all of the previous trials had been completed the final step was to take each test tube and pour it into a different cuvette and measure the absorbance for each. Once the initial concentration was calculated of Fe3+, NCS and FeNCS2+ in molarity. The absorbency values were recorded and used to calculate the formation constant, K f The reference table containing volumes used in each solution is provided below…
Chemists often find a method to determine the level of “greenness” of a chemical reaction, or its “atom economy”. A higher atom economy is preferable because a greater amount of the reactants will be present in the product as opposed to the byproduct.1 A Suzuki reaction is classified as an organic, coupling reaction that includes boronic acid and a halide that are catalyzed by a palladium complex under basic conditions. Other palladium- catalyzed coupling mechanisms include the Heck and Stille reactions. Palladium typically exists in the oxidation states of 0, +2, and +4. PdCl2 is usually the starting compound for several other heterogeneous palladium catalysts such as Pd/C and Pd/BaSO4.1 Suzuki coupling is an efficient way to…
II. Purpose: The purpose of this lab is to see how iron reacts with a copper (II) chloride solution.…
9) Put 4mL of stock solution and 1mL of water in a test tube to make the second solution.…
2. To determine the densities of water, an unknown liquid, a rubber stopper, and an unknown rectangular solid.…
Purpose: In this experiment I will determine the mass, density, volume, lengths and temperatures of different objects and liquids to help me better understand the importance of Chemistry and how Chemistry plays a big role in our everyday lives.…
A Cobalt-Amine-Halide compound is synthesized from cobalt (II) chloride hexahydrate. An orange-tinted solid is produced and is considered to be unknown since the specific ligand amounts are unknown. By determining the percent composition of various elements and compounds in the unknown, its true identity can be predicted. Chloride, ammonia, and cobalt are three examples of percent compositions determined to help narrow the selection of possible unknowns. Titrations using Na2S2O3 and HCl to determine percent cobalt and ammonia, respectively, are used. Silver nitrate is used to precipitate the chloride ions in the unknown, which can be measured to determine the percent composition of chloride in the unknown. The results from these three major analyses helped to draw the conclusion that the unknown is in fact [Co(NH3)6]Cl3.…
Carbon is denoted by the symbol C, is part of group 14 on the periodic table, and is the fourth most abundant element in the universe (by mass). Carbon has an electron configuration of 1s2, 2s2, 2p2. With 4 valance shell electrons it is expected to form 4 bonds, this means carbon is tetravalent. However the s orbitals do not form the same type of bond (with other atoms) as the p orbitals, this is because their shapes are different. For example CH4 would have the following bonds: C(s)-H(s), C(s)-H(s), C(p)-H(s), C(p)-H(s). This would also mean that CH4 would have a mixture of π bonds and σ bonds. However in reality this is not the case, all the bonds of CH4 are identical. This is due to hybridization, this is where the 2s orbital and the three 2p orbitals hybridize to form sp3, a hybrid orbital. sp3 hybrid orbitals have a tetrahedral shape because each orbital positions itself at angles of 109.5° (around CH4) maximising the distance between the…
At the beginning of the lab, a micro test tube with and without glass wool was weighed on an analytical balance. A watch glass, crucible, and lid were also weighed. The masses of all the materials needed for the lab were recorded in the data tables of the laboratory notebook. An unknown vial was obtained from the teacher and set to zero on the balance. About 0.6 grams of the unknown was measured into the micro test tube. The analytical balance was set to zero again and then the test tube with the unknown was measured and recorded.…
The Citric Acid Cycle is a series of enzyme-catalysed reactions that take place in the mitochondrial matrix of all aerobic organisms. It involves the oxidation of the acetyl group of acetyl CoA to two molecules of carbon dioxide. Each cycle produces one molecule of ATP by substrate-level phosphorylation, and reduces three molecules of NAD and one molecule of FAD for use in Oxidative Phosphorylation. The cycle is preceded by Glycolysis, which also occurs in anaerobic respiration, and the pyruvate dehydrogenase complex, which occur in the cytoplasm and the mitochondrial matrix respectively. In aerobic respiration, glycolysis breaks down one molecule of glucose and two molecules of pyruvate, and gives a net product…
What happens to the mass of the copper carbonate when it is heated? Give a conclusion, which describes why the mass of copper carbonate may have changed during your experiment.…
Abstract:The Wittig Reaction is a nucleophilic addition in which an alkene is formed as a product. Both the E and Z isomers of the alkene result. Substituents on the aromatic aldehyde affect the E/Z ratio of products that form. In this experiment, a nitro group was used as the substituent in the ortho, meta and para positions, with benzaldehyde as the control. Each of the four aldehydes reacted with (carbethoxymethylene) triphenylphosphorane to produce ethyl cinnamate, ethyl-3-(2-nitrophenyl)acrylate, ethyl-3-(3-nitrophenyl)acrylate, and ethyl-3-(4-nitrophenyl)acrylate. The prediction was the closer the substituent was to the aldehyde, the greater the ratio of E/Z isomers; benzaldehyde was predicted to result in the most similar ratio of E/Z isomers. The ratios of E/Z isomers were determined by using the NMR spectra obtained. A percent conversion was also obtained. Ethyl-3-(2-nitrophenyl)acrylate had a ratio of 9.03:1, ethyl-3-(3-nitrophenyl)acrylate had a ratio of 5.2:1, ethyl-3-(4-nitrophenyl)acrylate had a ratio of 1:1 and ethyl cinnamate had a ratio of 9.3:1. The results for the compounds except ethyl cinnamate supported the hypothesis that the ratio would be closer to 1:1 as the substituent moved further from the carbonyl.…
The goal of this lab was to determine the amount of grams of sodium bicarbonate (NaHCO3) required to produce enough CO2 gas to completely fill the lab and also how many Alka-Seltzer tablets that would equate to. This was done by collecting CO2 gas by inverting a buret and submerging it under water in order to calculate the volume of CO2 released from a fragment of Alka-Seltzer tablet. The main component of Alka-Seltzer is sodium bicarbonate, used to neutralize excess stomach acid during illness through the following reaction that generates CO2:…
[4] McMurry, J. Simanek, E. Fundamentals of Organic Chemistry 5th edition. Thomson Brooks Cole. 2000.…
“The Synthesis of Zinc Chloride”, what a peculiar name for a lab that does not even involve synthesis. Synthesis, by definition, is when two elements are combined in a chemical reaction,but that is not the case. In this lab we are combining zinc, an element, and hydrochloric acid, a compound, but combining a compound and an element is not synthesis, it is single replacement. We are taking zinc and hydrochloric acid and making zinc chloride and hydrogen, a single replacement, but what occurred during that replacement?…