SCH 4UI
Abstract
The Hydroxyl group on alcohols relates to their reactivity. This concept was explored by answering the question “Does each alcohol undergo halogenation and controlled oxidation?” . Using three isomers of butanol; the primary 1-butanol, the secondary 2-butanol and the tertiary 2-methyl-2-propanol, also referred to as T-butanol, two experiments were performed to test the capabilities of the alcohols. When mixed with hydrochloric acid in a glass test tube, the primary alcohol and secondary alcohols were expected to halogenate, however the secondary and tertiary ended up doing so. This may have been because of the orientation of the Hydroxyl group when butanol is in a different shape than 1-butanol. As hypothesised, when 1-butanol and 2-butanol samples were mixed with potassium permanganate in a test tube, signs of oxidation reactions resulted.
Introduction
It is often discussed that various functional groups bare ability to change the physical and chemical properties of an organic molecule. There are many varieties of functional groups, for example; Hydroxyl (a simple group with oxygen and hydrogen bonded to one another resulting in high polarity) Carbonyl (with the presence of carbon double bonded to oxygen), Carboxyl (a group with carbon double bonded to oxygen and also to a hydroxyl group), and Amine (containing nitrogen bonded to what could be a variety of elements). Each of these groups provides specific properties that are vary depending on the quantity and orientation of the groups in the molecule. Alcohols in particular (organic compounds holding one or more hydroxyl groups) are known to be very reactive because of the presence of that group. Thus the purpose of this investigation was to verify the theories of how organic molecular structure affects the properties of the molecule in question. In this specific experiment, three different alcohols with the same molecular formula but varying