Reiter
Honors Physic
8 March 2015
Background Information:
Anything that has mass and is moving has momentum. Momentum is equal to the objects mass times its velocity. Momentum is conserved, which means that “momentum before an event equals momentum immediately after, or pi=pf”. Since pi=pf, then pai+ pbi = paf+ pbf and (ma* vai)+ (mb* vbi)= (ma* vaf) + (mb * vbf). Having velocity simply means that an object has a speed and direction. Using the formula “(ma * vai) + (mb * vbi) = (ma* vaf) + (mb * vbf,)” the final velocity of two carts after they collide can be found. The first cart is 1.5 kg traveling at 0.7 m/s and the cart that it collides with is 1 kg and at rest, so (1.5 kg * 0.7 m/s) +(1 kg * 0)= (1.5 kg * vf) + (1 * vf). 1.05=2.5 (vf) so the final velocity is 2.38 m/s. This collision would look like:
1.5 kg, 0.7 m/s 1 kg, 0m/s m1+m2=1.5 kg, vf=2.38 m/s
Experimental Design
The purpose of this lab is to determine the mathematical equation relating the total system momentum of 2 carts before a collision (Pi) to the total system momentum of the 2 carts after the collision (Pf.). Some constants may be: the weight of the bars, the carts, the point at which the carts may start, the measurements being used, etc. After conducting 6 trails with the moving car being a different mass each time, the total system momentum before and after the collision was found. This makes the total system momentum of 2 carts before the collision (Pi) the independent variable and the total system of momentum of the 2 carts after the collision (Pf) the dependent variable. In this experiment the variables can be measured by the use of a motion detector. The hypothesis for this lab is: If the Pi changes then the Pf will change in a linear correlation.
Methods
1. Layout 2 carts on a level metal track and choose the two points each cart will start from
2. Set up the motion detector at the