References: Bali, S. (2012). IT vendors must explore “analytics as a service” for telcos [online]. OVUM. Available at :http://ovum.com/2012/01/30/it-vendors-must-explore-analytics-as-a-servicefor-telcos/ [Accessed 5 April 2013]. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth & Brooks. Cole Pacific Grove, CA. CompuBase. (n.d). IT & Telecom Distribution Glossary [online]. Available at: http://en.compubase.net/glossary/IT-Telecom-Distribution-Glossary_gi2586.html?l=S [Accessed 2 April 2013]. Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: the new science of winning. Harvard Business School Press. Davis, R. H., Edelman, D. B., & Gammerman, A. J. (1992). Machine-learning algorithms for credit-card applications. IMA Journal of Management Mathematics, 4(1), 43-51. Delen, D., & Crossland, M. D. (2008). Seeding the survey and analysis of research literature with text mining. Expert Systems with Applications, 34(3), 1707-1720. Desai, V. S., Crook, J. N., & Overstreet Jr, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37. Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 167. Goul, M. (2010). eBay Analytics 2010: Innovation inspired by Opportunity. BI Congress II. Harris, D. (2011). Six companies doing big data in the cloud [online]. GIGAOM. Available at: http://gigaom.com/2011/09/06/6-companies-doing-big-data-in-the-cloud/ [Accessed 7 April 2013]. Henley, W. E. (1995). Statistical aspects of credit scoring. Dissertation, The Open University, Milton Keynes, UK. 19 Henley, W. E., & Hand, D. J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician, 77-95. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S. (2011, January). Starfish: A self-tuning system for big data analytics. In Proc. of the Fifth CIDR Conf. Herschel, R. T., & Jones, N. E. (2005). Knowledge management and business intelligence: the importance of integration. Journal of Knowledge Management, 9(4), 45-55. Herschel, R., & Yermish, I. (2009). Knowledge management in business intelligence. In Knowledge management and organizational learning (pp. 131-143). Springer US Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847– 856. doi:10.1016/j.eswa.2006.07.007. Jackson, J. (2002). DATA MINING : A CONCEPTUAL OVERVIEW, 8, 267–296. Krishna, P. R., & Varma, K. I. (n.d.). Cloud Analytics A Path Towards Next Generation Affordable BI. Lee, T. S., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130. Personal, M., & Archive, R. (2008). Credit scoring with boosted decision trees, (8156). Proffitt, B. (2012). What AaaS needs to really succeed.BigQuery is latest analytics as a service, but is it a complete solution? [online]. Available at: http://www.itworld.com/bigdatahadoop/273952/what-aaas-needs-really-succeed [Accessed 10 April 2013]. Rud, O. P. (2009). Business intelligence success factors: tools for aligning your business in the global economy (Vol. 18). Wiley. Shmueli, G., Patel, N. R., & Bruce, P. C. (2011). Data mining for business intelligence: Concepts, techniques, and applications in Microsoft Office Excel with XLMiner. Wiley. Tang, H., Yang, Z., Zhang, P., & Yan, H. (2008, December). Using Data Mining to Accelerate Cross-Selling. In Business and Information Management, 2008. ISBIM '08. International Seminar on (Vol. 1, pp. 283-286). IEEE. 20 Turban, E., Sharda, R., Aronson, J. E., & King, D. N. (2008). Business intelligence: a managerial approach. Upper Saddle River: Pearson Prentice Hall. West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27(11), 1131-1152. 21
References: Bali, S. (2012). IT vendors must explore “analytics as a service” for telcos [online]. OVUM. Available at :http://ovum.com/2012/01/30/it-vendors-must-explore-analytics-as-a-servicefor-telcos/ [Accessed 5 April 2013]. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth & Brooks. Cole Pacific Grove, CA. CompuBase. (n.d). IT & Telecom Distribution Glossary [online]. Available at: http://en.compubase.net/glossary/IT-Telecom-Distribution-Glossary_gi2586.html?l=S [Accessed 2 April 2013]. Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: the new science of winning. Harvard Business School Press. Davis, R. H., Edelman, D. B., & Gammerman, A. J. (1992). Machine-learning algorithms for credit-card applications. IMA Journal of Management Mathematics, 4(1), 43-51. Delen, D., & Crossland, M. D. (2008). Seeding the survey and analysis of research literature with text mining. Expert Systems with Applications, 34(3), 1707-1720. Desai, V. S., Crook, J. N., & Overstreet Jr, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37. Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 167. Goul, M. (2010). eBay Analytics 2010: Innovation inspired by Opportunity. BI Congress II. Harris, D. (2011). Six companies doing big data in the cloud [online]. GIGAOM. Available at: http://gigaom.com/2011/09/06/6-companies-doing-big-data-in-the-cloud/ [Accessed 7 April 2013]. Henley, W. E. (1995). Statistical aspects of credit scoring. Dissertation, The Open University, Milton Keynes, UK. 19 Henley, W. E., & Hand, D. J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician, 77-95. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S. (2011, January). Starfish: A self-tuning system for big data analytics. In Proc. of the Fifth CIDR Conf. Herschel, R. T., & Jones, N. E. (2005). Knowledge management and business intelligence: the importance of integration. Journal of Knowledge Management, 9(4), 45-55. Herschel, R., & Yermish, I. (2009). Knowledge management in business intelligence. In Knowledge management and organizational learning (pp. 131-143). Springer US Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847– 856. doi:10.1016/j.eswa.2006.07.007. Jackson, J. (2002). DATA MINING : A CONCEPTUAL OVERVIEW, 8, 267–296. Krishna, P. R., & Varma, K. I. (n.d.). Cloud Analytics A Path Towards Next Generation Affordable BI. Lee, T. S., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130. Personal, M., & Archive, R. (2008). Credit scoring with boosted decision trees, (8156). Proffitt, B. (2012). What AaaS needs to really succeed.BigQuery is latest analytics as a service, but is it a complete solution? [online]. Available at: http://www.itworld.com/bigdatahadoop/273952/what-aaas-needs-really-succeed [Accessed 10 April 2013]. Rud, O. P. (2009). Business intelligence success factors: tools for aligning your business in the global economy (Vol. 18). Wiley. Shmueli, G., Patel, N. R., & Bruce, P. C. (2011). Data mining for business intelligence: Concepts, techniques, and applications in Microsoft Office Excel with XLMiner. Wiley. Tang, H., Yang, Z., Zhang, P., & Yan, H. (2008, December). Using Data Mining to Accelerate Cross-Selling. In Business and Information Management, 2008. ISBIM '08. International Seminar on (Vol. 1, pp. 283-286). IEEE. 20 Turban, E., Sharda, R., Aronson, J. E., & King, D. N. (2008). Business intelligence: a managerial approach. Upper Saddle River: Pearson Prentice Hall. West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27(11), 1131-1152. 21