General Chemistry I Lab
09/12/2007
Lab 7
Density of Sprite and Diet Sprite
Abstract:
The density of regular Sprite was found to be 1.037 +/- g/mL. compared to Diet Sprite which was 0.9965 +/- g/mL. Among the three volumetric glassware Pipette was most precise (ó=0.0016 g/mL). Burette was the second best (ó=0.0023 g/mL) and graduated cylinder was the least precise (ó= 0.007 g/mL). Density was found to be intensive property. The slope of the graph of mass against volume was 1.05 g/mL, with the best linear fit for the data.
Introduction:
In chemistry, accuracy and precision are very important. Accuracy is the degree of conformity of a literature value and precision is a degree to which further calculated values show similar result. In this lab, the volume of the solution (diet or regular) is measured using the Pipette, Burette, and Graduated Cylinder respectively. The mass of the solution is then measured to calculate the density of the soda. Density is mass of a substance per unit volume2. How heavy the substance is according to its size or volume. The volume of liquid is measured in mL and mass in grams. Since, the density of water is 1g/cm3 ; therefore Diet Sprite's density should be equal to or a little bit more then water. The hypothesis was that regular Sprite will have higher density because it has a higher sugar concentration present which increases the mass per volume ratio of the solution. In this experiment only regular Sprite was used. The results are then compared to another group which calculated the density of Diet Sprite.
Experimental:
Part A
In the first phase of the experiment, the 25 ml Pipette is used to measure the volume and mass of the solution. Another beaker was in grams. Pipette was used to measure 25ml of regular Sprite. The solution was drawn the beaker and its mass was measured on the electronic balance. Mass of the solution was then calculated by subtracting beaker's weight and beaker with solution's weight.
References: 1. "Standard Deviation" Wikipedia 2007. 2 octuber 2007 2. Chemistry, 9e, Raymond Chang, McGraw-Hill, New York, p. 15, 2007.