professor: Ernesto Suarez
by ananthalakshmi adapa
University of Hartford
What is a electron microscopy?
An electron microscope (EM) is a type of microscope that uses an electron beam to illuminate a specimen and produce a magnified image.
An EM has greater resolving power than a light microscope and can reveal the structure of smaller objects because electrons have wavelengths about 100,000 times shorter than visible light photons. They can achieve better than 50 pm resolution and magnifications of up to about 10,000,000x whereas ordinary, non-confocal light microscopes are limited by diffraction to about 200 nm resolution and useful magnifications below 2000x.
The electron microscope uses electrostatic and electromagnetic lenses to control the electron beam and focus it to form an image. These electron optical lenses are analogous to the glass lenses of a light optical microscope.
Electron microscopes are used to investigate the ultrastructure of a wide range of biological and
Electron microscope details of hair; a cut strand a root the tip of the root and a worn end inorganic specimens including microorganisms, cells, large molecules, biopsy samples, metals, and crystals. Industrially, the electron microscope is often used for quality control and failure analysis. Modern electron microscopes produce electron micrographs, using specialized digital cameras or frame grabbers to capture the image.
An EM is a microscope that focuses beams of energetic electrons to examine objects up to nano-scales.
They utilize the same principles behind an optical microscope, but rather than photons or particles of light, concentrate electrons, charged particles located on the outside of atoms, onto an object.
Additional differences include preparation of specimens before being placed in the vacuum
References: http://www.umms.sav.sk/index.php?ID=5104 Fultz, B and Howe, J (2007) Michael A. O’Keefe and Lawrence F. Allard. "Sub-Ångstrom Electron Microscopy for Sub-Ångstrom Nano-Metrology". National Nanotechnology Initiative Workshop on Instrumentation and Metrology for Nanotechnology, Gaithersburg, MD (2004)